

Learn Algorithmic Trading

Build and deploy algorithmic trading systems and strategies
using Python and advanced data analysis

Sebastien Donadio
Sourav Ghosh

BIRMINGHAM - MUMBAI

Learn Algorithmic Trading
Copyright © 2019 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
authors, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Sunith Shetty
Acquisition Editor: Ali Abidi
Content Development Editor: Nazia Shaikh
Senior Editor: Sheetal Rane
Technical Editor: Dinesh Chaudhary
Copy Editor: Safis Editing
Project Coordinator: Kirti Pisat
Proofreader: Safis Editing
Indexer: Pratik Shirodkar
Production Designer: Joshua Misquitta

First published: November 2019

Production reference: 1071119

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78934-834-7

www.packt.com

http://www.packt.com

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt.com and, as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at customercare@packtpub.com for more details.

At www.packt.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://subscribe.packtpub.com/
http://www.packt.com
http://www.packt.com

Contributors

About the authors
Sebastien Donadio is the Chief Technology Officer at Tradair, responsible for leading the
technology. He has a wide variety of professional experience, including being head of
software engineering at HC Technologies, partner and technical director of a high-
frequency FX firm, a quantitative trading strategy software developer at Sun Trading,
working as project lead for the Department of Defense. He also has research experience
with Bull SAS, and an IT Credit Risk Manager with Société Générale while in France. He
has taught various computer science courses for the past ten years in the University of
Chicago, NYU and Columbia University. His main passion is technology but he is also a
scuba diving instructor and an experienced rock-climber.

Sourav Ghosh has worked in several proprietary high-frequency algorithmic trading firms
over the last decade. He has built and deployed extremely low latency, high throughput
automated trading systems for trading exchanges around the world, across multiple asset
classes. He specializes in statistical arbitrage market-making, and pairs trading strategies
for the most liquid global futures contracts. He works as a Senior Quantitative Developer at
a trading firm in Chicago. He holds a Masters in Computer Science from the University of
Southern California. His areas of interest include Computer Architecture, FinTech,
Probability Theory and Stochastic Processes, Statistical Learning and Inference Methods,
and Natural Language Processing.

About the reviewers
Nataraj Dasgupta is the VP of Advanced Analytics at RxDataScience Inc. He has been in
the IT industry for more than 19 years and has worked in the technical & analytics divisions
of Philip Morris, IBM, UBS Investment Bank, and Purdue Pharma. He led the Data Science
team at Purdue, where he developed the company's award-winning Big Data and Machine
Learning platform. Prior to Purdue, at UBS, he held the role of Associate Director, working
with high-frequency & algorithmic trading technologies in the Foreign Exchange Trading
group. He has authored Practical Big Data Analytics and co-authored Hands-on Data Science
with R. Apart from his role at RxDataScience, and is also currently affiliated with Imperial
College, London.

Ratanlal Mahanta is currently working as a quantitative analyst at bittQsrv, a global
quantitative research company offering quant models for its investors. He has several years
of experience in the modeling and simulation of quantitative trading. Ratanlal holds a
master's degree in science in computational finance, and his research areas include quant
trading, optimal execution, and high-frequency trading. He has over 9 years' work
experience in the finance industry, and is gifted at solving difficult problems that lie at the
intersection of the market, technology, research, and design.

Jiri Pik is an artificial intelligence architect & strategist who works with major investment
banks, hedge funds, and other players. He has architected and delivered breakthrough
trading, portfolio, and risk management systems, as well as decision support systems,
across numerous industries.

Jiri's consulting firm, Jiri Pik—RocketEdge, provides its clients with certified expertise,
judgment, and execution at the speed of light.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Section 1: Introduction and Environment Setup
Chapter 1: Algorithmic Trading Fundamentals 7

Why are we trading? 8
Basic concepts regarding the modern trading setup 8

Market sectors 9
Asset classes 10
Basics of what a modern trading exchange looks like 12

Understanding algorithmic trading concepts 13
Exchange order book 14
Exchange matching algorithm 14

FIFO matching 15
Pro-rata matching 15

Limit order book 16
Exchange market data protocols 16
Market data feed handlers 17
Order types 17

IOC – Immediate Or Cancel 17
GTD – Good Till Day 17
Stop orders 17

Exchange order entry protocols 18
Order entry gateway 18
Positions and profit and loss (PnL) management 18

From intuition to algorithmic trading 19
Why do we need to automate trading? 19
Evolution of algorithmic trading – from rule-based to AI 20

Components of an algorithmic trading system 22
Market data subscription 23
Limit order books 23
Signals 24
Signal aggregators 24
Execution logic 24
Position and PnL management 25
Risk management 26
Backtesting 26

Why Python? 27
Choice of IDE – Pycharm or Notebook 28

Table of Contents

[ii]

Our first algorithmic trading (buy when the price is low, and sell when the
price is high) 29
Setting up your workspace 29

PyCharm 101 30
Getting the data 30
Preparing the data – signal 31
Signal visualization 34
Backtesting 35

Summary 37

Section 2: Trading Signal Generation and Strategies
Chapter 2: Deciphering the Markets with Technical Analysis 39

Designing a trading strategy based on trend- and momentum-based
indicators 40

Support and resistance indicators 40
Creating trading signals based on fundamental technical analysis 47

Simple moving average 47
Implementation of the simple moving average 48

Exponential moving average 49
Implementation of the exponential moving average 51

Absolute price oscillator 53
Implementation of the absolute price oscillator 53

Moving average convergence divergence 55
Implementation of the moving average convergence divergence 56

Bollinger bands 59
Implementation of Bollinger bands 60

Relative strength indicator 62
Implementation of the relative strength indicator 63

Standard deviation 66
Implementing standard derivatives 66

Momentum 68
Implementation of momentum 69

Implementing advanced concepts, such as seasonality, in trading
instruments 71
Summary 79

Chapter 3: Predicting the Markets with Basic Machine Learning 80
Understanding the terminology and notations 81

Exploring our financial dataset 84
Creating predictive models using linear regression methods 87

Ordinary Least Squares 87
Regularization and shrinkage – LASSO and Ridge regression 93
Decision tree regression 94

Creating predictive models using linear classification methods 95
K-nearest neighbors 95
Support vector machine 98

Table of Contents

[iii]

Logistic regression 99
Summary 100

Section 3: Algorithmic Trading Strategies
Chapter 4: Classical Trading Strategies Driven by Human Intuition 102

Creating a trading strategy based on momentum and trend
following 103

Examples of momentum strategies 104
Python implementation 104

Dual moving average 104
Naive trading strategy 107
Turtle strategy 109

Creating a trading strategy that works for markets with reversion
behavior 111

Examples of reversion strategies 112
Creating trading strategies that operate on linearly correlated
groups of trading instruments 112

Summary 130

Chapter 5: Sophisticated Algorithmic Strategies 131
Creating a trading strategy that adjusts for trading instrument
volatility 132

Adjusting for trading instrument volatility in technical indicators 132
Adjusting for trading instrument volatility in trading strategies 133
Volatility adjusted mean reversion trading strategies 134

Mean reversion strategy using the absolute price oscillator trading signal 134
Mean reversion strategy that dynamically adjusts for changing volatility 144
Trend-following strategy using absolute price oscillator trading signal 148

Trend-following strategy that dynamically adjusts for changing volatility 153
Creating a trading strategy for economic events 155

Economic releases 156
Economic release format 157
Electronic economic release services 157
Economic releases in trading 158

Understanding and implementing basic statistical arbitrage trading
strategies 161

Basics of StatArb 161
Lead-lag in StatArb 162
Adjusting portfolio composition and relationships 162
Infrastructure expenses in StatArb 163
StatArb trading strategy in Python 164

StatArb data set 164
Defining StatArb signal parameters 166
Defining StatArb trading parameters 167
Quantifying and computing StatArb trading signals 168
StatArb execution logic 172

Table of Contents

[iv]

StatArb signal and strategy performance analysis 173
Summary 183

Chapter 6: Managing the Risk of Algorithmic Strategies 184
Differentiating between the types of risk and risk factors 185

Risk of trading losses 185
Regulation violation risks 186
Spoofing 186
Quote stuffing 187
Banging the close 188
Sources of risk 188

Software implementation risk 188
DevOps risk 189
Market risk 190

Quantifying the risk 191
The severity of risk violations 192

Differentiating the measures of risk 193
Stop-loss 194
Max drawdown 196
Position limits 198
Position holding time 200
Variance of PnLs 201
Sharpe ratio 203
Maximum executions per period 204
Maximum trade size 207
Volume limits 207

Making a risk management algorithm 208
Realistically adjusting risk 213

Summary 222

Section 4: Building a Trading System
Chapter 7: Building a Trading System in Python 224

Understanding the trading system 225
Gateways 226
Order book management 228
Strategy 230
Order management system 231
Critical components 232
Non-critical components 232

Command and control 233
Services 234

Building a trading system in Python 234
LiquidityProvider class 236
Strategy class 239
OrderManager class 245
MarketSimulator class 250

Table of Contents

[v]

TestTradingSimulation class 252
Designing a limit order book 255
Summary 263

Chapter 8: Connecting to Trading Exchanges 264
Making a trading system trade with exchanges 264
Reviewing the Communication API 266

Network basics 267
Trading protocols 267
FIX communication protocols 269

Price updates 269
Orders 271

Receiving price updates 272
Initiator code example 275

Price updates 275
Sending orders and receiving a market response 279

Acceptor code example 281
Market Data request handling 282
Order 283

Other trading APIs 286
Summary 287

Chapter 9: Creating a Backtester in Python 288
Learning how to build a backtester 288

In-sample versus out-of-sample data 289
Paper trading (forward testing) 290
Naive data storage 290
HDF5 file 291
Databases 293

Relational databases 293
Non-relational databases 295

Learning how to choose the correct assumptions 296
For-loop backtest systems 298

Advantages 299
Disadvantages 299

Event-driven backtest systems 299
Advantages 300
Disadvantages 301

Evaluating what the value of time is 302
Backtesting the dual-moving average trading strategy 306

For-loop backtester 306
Event-based backtester 310

Summary 319

Section 5: Challenges in Algorithmic Trading
Chapter 10: Adapting to Market Participants and Conditions 321

Table of Contents

[vi]

Strategy performance in backtester versus live markets 322
Impact of backtester dislocations 324

Signal validation 325
Strategy validation 325
Risk estimates 325
Risk management system 326
Choice of strategies for deployment 326
Expected performance 326

Causes of simulation dislocations 327
Slippage 327
Fees 327
Operational issues 328
Market data issues 328
Latency variance 328
Place-in-line estimates 329
Market impact 329

Tweaking backtesting and strategies in response to live trading 330
Historical market data accuracy 330
Measuring and modeling latencies 331
Improving backtesting sophistication 332
Adjusting expected performance for backtester bias 333
Analytics on live trading strategies 334

Continued profitability in algorithmic trading 335
Profit decay in algorithmic trading strategies 335

Signal decay due to lack of optimization 336
Signal decay due to absence of leading participants 336
Signal discovery by other participants 337
Profit decay due to exit of losing participants 338
Profit decay due to discovery by other participants 338
Profit decay due to changes in underlying assumptions/relationships 339
Seasonal profit decay 340

Adapting to market conditions and changing participants 341
Building a trading signals dictionary/database 341
Optimizing trading signals 343
Optimizing prediction models 344
Optimizing trading strategy parameters 344
Researching new trading signals 345
Expanding to new trading strategies 347
Portfolio optimization 348

Uniform risk allocation 349
PnL-based risk allocation 349
PnL-sharpe-based risk allocation 349
Markowitz allocation 350
Regime Predictive allocation 351

Incorporating technological advances 353
Summary 354
Final words 355

Other Books You May Enjoy 356

Table of Contents

[vii]

Index 359

Preface
In modern times, it is increasingly difficult to gain a significant competitive edge just by
being faster than others, which means relying on sophisticated trading signals, predictive
models, and strategies. In our book Learn Algorithmic Trading, we provide a broad audience
with the knowledge and hands-on practical experience required to build a good
understanding of how modern electronic trading markets and market participants operate,
as well as how to go about designing, building, and operating all the components required
to build a practical and profitable algorithmic trading business using Python.

You will be introduced to algorithmic trading and setting up the environment required to
perform tasks throughout the book. You will learn the key components of an algorithmic
trading business and the questions you need to ask before embarking on an automated
trading project.

Later, you will learn how quantitative trading signals and trading strategies are developed.
You will get to grips with the workings and implementation of some well-known trading
strategies. You will also understand, implement, and analyze more sophisticated trading
strategies, including volatility strategies, economic release strategies, and statistical
arbitrage. You will learn how to build a trading bot from scratch using the algorithms built
in the previous sections.

By now, you will be ready to connect to the market and start researching, implementing,
evaluating, and safely operating algorithmic trading strategies in live markets.

Who this book is for
This book is for software engineers, financial traders, data analysts, entrepreneurs, and
anyone who wants to begin their journey in algorithmic trading. If you want to understand
how algorithmic trading works, what all the components of a trading system are, the
protocols and algorithms required for black box and gray box trading, and how to build a
completely automated and profitable trading business, then this book is what you need!

Preface

[2]

What this book covers
Chapter 1, Algorithmic Trading Fundamentals, explains what algorithmic trading is and how
algorithmic trading is related to high frequency or low latency trading. We will discuss the
evolution of algorithmic trading, from rule-based to AI. We will look at essential
algorithmic trading concepts, asset classes, and instruments. You will learn how to set up
your mind for algorithmic decisions.

Chapter 2, Deciphering the Markets with Technical Analysis, covers some popular technical
analysis methods and shows how to apply them to the analysis of market data. We will
perform basic algorithmic trading using market trends, support, and resistance.

Chapter 3, Predicting the Markets with Basic Machine Learning, reviews and implements a
number of simple regression and classification methods and explains the advantages of
applying supervised statistical learning methods to trading.

Chapter 4, Classical Trading Strategies Driven by Human Intuition, looks at some basic
algorithmic strategies (momentum, trend, mean-reversion), and explains their workings, as
well as their advantages and disadvantages.

Chapter 5, Sophisticated Algorithmic Strategies, consolidates the basic algorithmic strategies
by looking at more advanced approaches (statistical arbitrage, pair correlation), as well as
their advantages and disadvantages.

Chapter 6, Managing Risk in Algorithmic Strategies, explains how to measure and manage
risk (market risk, operational risk, and software implementation bugs) in algorithmic
strategies.

Chapter 7, Building a Trading System in Python, describes the functional components
supporting the trading strategy based on the algorithm created in the preceding chapters.
We will be using Python to build a small trading system, and will use the algorithm from
the preceding chapters to build a trading system capable of trading.

Chapter 8, Connecting to Trading Exchanges, describes the communication components of a
trading system. We will be using the quickfix library in Python to connect the trading
system to a real exchange.

Chapter 9, Creating a Backtester in Python, explains how to improve your trading algorithm
by running tests with large amounts of data to validate the performance of your trading
bot. Once a model is implemented, it is necessary to test whether the trading robot behaves
as expected in the trading infrastructure (by checking for implementation-related mistakes).

Preface

[3]

Chapter 10, Adapting to Market Participants and Conditions, discusses why strategies do not
perform as expected when deployed in live trading markets and provides examples of how
to address those issues in the strategies themselves or the underlying assumptions. We will
also discuss why strategies that are performing well slowly deteriorate in terms of
performance and provide some simple examples to explain how to address this.

To get the most out of this book
Readers should have a basic knowledge of finance and Python.

Download the example code files
You can download the example code files for this book from your account at
www.packt.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt.com.1.
Select the Support tab.2.
Click on Code Downloads.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Learn-Algorithmic-Trading. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

http://www.packt.com
https://www.packtpub.com/support
http://www.packt.com
https://github.com/PacktPublishing/Learn-Algorithmic-Trading
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[4]

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/9781789348347_ColorImages.pdf.

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "This code will use the DataReader function from
the pandas_datareader package."

A block of code is set as follows:

import pandas as pd
from pandas_datareader import data

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

 if order['action'] == 'to_be_sent':
 # Send order
 order['status'] = 'new'
 order['action'] = 'no_action'
 if self.ts_2_om is None:

Bold: Indicates a new term, an important word, or words that you see on screen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"A mean reversion strategy that relies on the Absolute Price Oscillator (APO) trading
signal indicator."

Warnings or important notes appear like this.

Tips and tricks appear like this.

http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf
http://www.packtpub.com/sites/default/files/downloads/9781789348347_ColorImages.pdf

Preface

[5]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in,
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt.com.

https://www.packtpub.com/support/errata
http://authors.packtpub.com/
http://www.packt.com/

1
Section 1: Introduction and

Environment Setup
In this section, you will be introduced to algorithmic trading and setting up the
environment required to perform tasks throughout the book. You will learn the key
components of trading and the questions you need to ask before embarking on a robot
trading project.

This section comprises the following chapter:

Chapter 1, Algorithmic Trading Fundamentals

1
Algorithmic Trading

Fundamentals
Algorithmic trading, or automated trading, works with a program that contains a set of
instructions for trading purposes. Compared to a human trader, this trade can generate
profits and losses at a higher speed. In this chapter, this will be your first time being
exposed to trading automation. We will walk you through the different steps to implement
your first trading robot. You will learn the trading world and the technical
trading components behind it. We will also go into detail about the tools that you will use
and, by the end of this chapter, you will be capable of coding your first native trading
strategy in Python. We will cover the following topics in this chapter:

Why are we trading?
Introducing algorithm trading and automation
What the main trading components are
Setting up your first programming environment
Implementing your first native strategy

Algorithmic Trading Fundamentals Chapter 1

[8]

Why are we trading?
From the Roman era through to the present day, trading is an inherent part of humankind.
Buying raw materials when the price is low to resell it when the price is high has been a
part of many cultures. In ancient Rome, the rich Romans used the Roman Forum to exchange
currencies, bonds, and investments. In the 14th century, traders negotiated government
debts in Venice. The earliest form of the stock exchange was created in Antwerp, Belgium,
in 1531. Traders used to meet regularly to exchange promissory notes and bonds. The
conquests of new worlds entailed a high cost, but also a good return. The Dutch East India
Company in 1602 opened their capital for investors to participate in this costly project with
a high potential return. During the same time period, a well-known tulip was sold
everywhere in the world, creating a profitable market for investors and sellers. A future
contract was created for this reason, since many people speculated regarding the price of
this flower.

A hundred years later, a French expedition to Louisiana was also attracting many investors,
creating the dream of making a lot of money. The Mississippi Company was created to
handle all the investments based on potential wealth in Louisiana. Many other investment
opportunities arose across the centuries, including the British railroad and the conquest of
Latin America.

All these events had a common root: wealthy people willing to make more money. If we
want to answer the question Why are we trading?, the answer is to potentially make more
money. However, all the previous historical examples ended pretty badly. Investments
turned out to be bad investments or, most of the time, the value was over-estimated and
traders ended up losing their money. This is actually a good lesson for the readers of this
book. Even if trading can sound a profitable business, always keep in mind the
ephemeral part of profitability (it can work sometimes, but not always) and also taking into
account the inherent risk that goes with investment.

Basic concepts regarding the modern
trading setup
This section will cover the basics of trading and what drives market prices, as well as
supply and demand.

Algorithmic Trading Fundamentals Chapter 1

[9]

As we touched upon in the previous section, trading has been around since the beginning
of time, when people wanted to exchange goods between one another and make profits
while doing so. Modern markets are still driven by basic economic principles of supply and
demand. When demand outweighs supply, prices of a commodity or service are likely to
rise higher to reflect the relative shortage of the commodity or service in relation to the
demand for it. Conversely, if the market is flooded with a lot of sellers for a particular
product, prices are likely to drop. Hence, the market is always trying to reflect the
equilibrium price between available supply and demand for a particular product. We will
see later how this is the fundamental driver of price discovery in today's markets. With the
evolution of modern markets and available technology, price discovery becomes
increasingly efficient.

Intuitively, you may draw a parallel with the fact that with the advances in online retail
businesses, prices of products have become increasingly efficient across all sellers, and the
best offers are always the ones that customers are buying because the information (price
discovery) is so easily accessible. The same is true for modern trading. With advances in
technology and regulations, more and more market participants have access to complete
market data that makes price discovery much more efficient than in the past. Of course, the
speed at which participants receive information, the speed at which they react, the
granularity of the data that they can receive and handle, and the sophistication with which
each participant draws trading insights from the data they receive, is where the competition
lies in modern trading, and we will go over these in the subsequent sections. But first, let's
introduce some basic concepts regarding the modern trading setup.

Market sectors
In this section, we will briefly introduce the concepts of what different types of market
sectors are and how they differ from the concept of asset classes.

Algorithmic Trading Fundamentals Chapter 1

[10]

Market sectors are the different kinds of underlying products that can be traded. The most
popular market sectors are commodities (metals, agricultural produce), energy (oil, gas),
equities (stocks of different companies), interest rate bonds (coupons you get in exchange
for debt, which accrues interest, hence the name), and foreign exchange (cash exchange
rates between currencies for different countries):

Asset classes
Asset classes are the different kinds of actual vehicles that are available for trading at
different exchanges. For example, cash interest rate bonds, cash foreign exchange, and cash
stock shares are what we described in the previous section, but we can have financial
instruments that are derivatives of these underlying products. Derivatives are instruments
that are built on top of other instruments and have some additional constraints, which we
will explore in this section. The two most popular derivatives are futures and options, and
are heavily traded across all derivatives electronic exchanges.

Algorithmic Trading Fundamentals Chapter 1

[11]

We can have future contracts pertaining to underlying commodities, energy, equities,
interest rate bonds, and foreign exchanges that are tied to the prices of the underlying
instruments, but have different characteristics and rules. A simple way to think of a future
contract is that it is a contract between a buyer and a seller in which the seller promises to
sell a certain amount of the underlying product at a certain date in the future (also known
as the expiry date), and where the buyer agrees to accept the agreed-upon amount at the
specific date at the specific price.

For example, a producer of butter might want to protect themselves from a potential future
spike in the price of milk, on which the production costs of butter directly depend, in which
case, the butter producer can enter into an agreement with a milk producer to provide them
with enough milk in the future at a certain price. Conversely, a milk producer may worry
about possible buyers of milk in the future and may want to reduce the risk by making an
agreement with butter producers to buy at least a certain amount of milk in the future at a
certain price, since milk is perishable and a lack of supply would mean a total loss for a
milk producer. This is a very simple example of a future contract trade; modern future
contracts are much more complex than this.

Similar to future contracts, we can have options contracts for underlying commodities,
energy, equities, interest rate bonds, and foreign exchanges that are tied to the prices of the
underlying instruments, but have different characteristics and rules. The difference in an
options contract compared to a futures contract is that the buyer and seller of an options
contract have the option of refusing to buy or sell at the specific amount, at the specific
date, and at the specific price. To safeguard both counterparties involved in an options
trade, we have the concept of a premium, which is the minimum amount of money that has
been paid upfront to buy/sell an options contract.

A call option, or the right to buy, but not an obligation to buy at expiration, makes money if
the price of the underlying product increases prior to expiration because now, such a party
can exercise their option at expiration and buy the underlying product at a price lower than
the current market price. Conversely, if the price of the underlying product goes down
prior to expiration, such a party now has the option of backing out of exercising their
option and thus, only losing the premium that they paid for. Put options are analogous, but
they give the holder of a put contract the right to sell, but not an obligation to sell, at
expiration.

We will not delve too deeply into different financial products and derivatives since that is
not the focus of this book, but this brief introduction was meant to introduce the idea that
there are a lot of different tradeable financial products out there and that they vary
significantly in terms of their rules and complexity.

Algorithmic Trading Fundamentals Chapter 1

[12]

Basics of what a modern trading exchange looks
like
Since this book is primarily designed to introduce what modern algorithmic trading looks
like, we will focus on trying to understand how a modern electronic trading exchange
appears. Gone are the days of people yelling at one another in the trading pits and making
hand signals to convey their intentions to buy and sell products at certain prices. These
remain amusing ideas for movies, but modern trading looks significantly different.

Today, most of the trading is done electronically through different software applications.
Market data feed handlers process and understand market data disseminated by the
trading exchanges to reflect the true state of the limit book and market prices (bids and
offers). The market data is published in a specific market data protocol previously agreed
upon by the exchange and the market participants (FIX/FAST, ITCH, and HSVF). Then, the
same software applications can relay that information back to humans or make decisions
themselves algorithmically. Those decisions are then again communicated to the exchange
by a similar software application (order entry gateways) that informs the exchange of our
interest in a specific product and our interest in buying or selling that product at specific
prices by sending specific order types (GTDs, GTCs, IOCs, and so on). This involves
understanding and communicating with the exchange in an exchange order entry protocol
previously agreed upon by the exchange and participants at the exchange (FIX, OMEX,
OUCH).

After a match takes place against available market participants, that match is conveyed
back to the software application again via the order entry gateways and relayed back to the
trading algorithm or the humans, thereby completing a transaction, often wholly
electronically. The speed of this round trip varies a lot based on the market, the participant,
and the algorithms themselves. This can be as low as under 10 microseconds all the way up
to seconds, but we will discuss this in greater detail later.

The following diagram is a descriptive view of the flow of information from an electronic
trading exchange to the market participants involved, and the flow of information back to
the exchange:

Algorithmic Trading Fundamentals Chapter 1

[13]

As shown in the preceding diagram, the trading exchange maintains a book of client buy
orders (bids) and client ask orders (asks), and publishes market data using market data
protocols to provide the state of the book to all market participants. Market data feed
handlers on the client side decode the incoming market data feed and build a limit order
book on their side to reflect the state of the order book as the exchange sees it. This is then
propagated through the client's trading algorithm and then goes through the order entry
gateway to generate an outgoing order flow. The outgoing order flow is communicated to
the exchange via order entry protocols. This, in turn, will generate further market data
flow, and so the trading information cycle continues.

Understanding algorithmic trading concepts
We introduced a lot of new concepts in the previous section, such as exchange order books
(consisting of different kinds of orders sent by market participants), exchange matching
algorithms, exchange market data protocols, and exchange order entry protocols. Let's
formally discuss these in greater detail here.

Algorithmic Trading Fundamentals Chapter 1

[14]

Exchange order book
The exchange order book maintains all incoming buy and sell orders placed by clients. It
tracks all attributes for incoming orders—prices, number of contracts/shares, order types,
and participant identification. Buy orders (or bids) are sorted from the highest price (best
price) to the lowest price (worst price). Bids with higher prices have a higher priority as far
as matching is concerned. Bids at the same price are prioritized depending on the matching
algorithm. The simplest FIFO (First In First Out) algorithm uses the intuitive rule of
prioritizing orders at the same price in the order in which they came in. This will be
important later on when we discuss how sophisticated trading algorithms use speed and
intelligence to get higher priorities for their orders and how this impacts profitability. Sell
orders (or asks) are sorted from the lowest price (best price) to the highest price (worst
price). Again, as regards asks at the same price, the matching prioritization method
depends on the matching algorithm adopted by the exchange for the specific product,
which we will expand upon in greater detail in the next section. Market participants are
allowed to place new orders, cancel existing orders, or modify order attributes such as price
and the number of shares/contracts, and the exchange generates public market data in
response to each order sent by participants. Using the market data distributed by the
exchange, market participants can get an accurate idea of what the order book at the
exchange looks like (depending on what information the exchange chooses to hide, but we
ignore that nuance for now).

Exchange matching algorithm
When incoming bids are at or above the best (lowest price) ask orders, then a match occurs.
Conversely, when incoming asks are at or below the best (highest price) bid orders, then a
match occurs. Incoming aggressive orders continue to match against existing passive orders
in the book until one of these two conditions is met. Either the new aggressive order is fully
matched, or the other possibility is that the remaining orders on the opposite side have
prices worse than the incoming order price and, hence, the match cannot occur. This is
because of the fundamental rule that an order cannot be matched at a price worse than the
limit price it was entered at. Now, as far as orders at the same price level are concerned, the
order of matching is dictated by what matching algorithm rules the exchange adopts.

Algorithmic Trading Fundamentals Chapter 1

[15]

FIFO matching
We briefly described the FIFO algorithm previously, but let's expand on it by showing an
example. Assume the following state of an order book when the exchange bid orders A, B,
and C were entered at price 10.00 in that order in time. So, at the same price, order A has a
higher priority than order B, which has a higher priority than order C. Bid order D is at a
worse price, 9.00. Similarly, on the ask side, order X was entered at price 11.00 before order
Y, also at price 11.00. Hence, order X has a higher priority than order Y, and then ask order
Z was entered at a worse price, 12.00:

BIDS ASKS
Order A: Buy 1 @ 10.00 Order X: Sell 1 @ 11.00
Order B: Buy 2 @ 10.00 Order Y: Sell 2 @ 11.00
Order C: Buy 3 @ 10.00 Order Z: Sell 2 @ 12.00
Order D: Buy 1 @ 9.00

Assume an incoming sell order K for 4 shares @ 10.00 would match against order A for 1
share, order B for 2 shares, and order C for 1 share, in that order, under FIFO matching. At
the end of the matching, order C would still have the remaining size of 2 shares at price
10.00 and will have the highest priority.

Pro-rata matching
Pro-rata matching comes in a variety of flavors and is usually implemented in slightly
different ways. For the scope of this book, we provide some intuition behind this matching
algorithm and provide a hypothetical matching scenario.

The underlying intuition between pro-rata matching is that it favors larger orders over
smaller orders at the same price and ignores the time at which the orders were entered.
This changes the market's microstructure quite a bit, and the participants are favored to
enter larger orders to gain priority instead of entering orders as fast as possible:

BIDS ASKS
Order A: Buy 100 @ 10.00 Order X: Sell 100 @ 11.00
Order B: Buy 200 @ 10.00 Order Y: Sell 200 @ 11.00
Order C: Buy 700 @ 10.00 Order Z: Sell 200 @ 12.00
Order D: Buy 100 @ 9.00

Algorithmic Trading Fundamentals Chapter 1

[16]

Consider a market state as shown earlier. For the sake of this example, the hypothetical
order sizes have been raised by a factor of 100. Here, bid orders A, B, and C are at the same
price, 10.00. However, when an incoming sell order of size 100 comes in for price 10.00,
order C gets a fill for 70 contracts, order B gets a fill for 20 contracts, and order A gets a fill
for 10 contracts, proportional to how big they are at that level. This is an overly simplified
example that excludes complications related to fractional match sizes and breaking ties
between orders with the same size, and so on. Also, some exchanges have a mix of pro-rata
and FIFO, where part of the incoming aggressor matches using pro-rata, and part matches
in FIFO order. But this should serve as a good basic understanding of how different pro-
rata matching is compared to FIFO matching. A detailed examination of pro-rata matching
and its impact is beyond the scope of this book, so we exclude it.

Limit order book
A limit order book is very similar in spirit to the exchange order book. The only difference
is that this is built by the market participants based on the market data that is being sent out
by the exchange in response to market participants sending orders to it. The limit order
book is a central concept in all algorithmic trading, and one often found in all other forms
of trading as well. The purpose is to collect and arrange bids and offers in a meaningful
way to gain insight into the market participants present at any particular time, as well as
gain insight regarding what the equilibrium prices are. We will revisit these in the next
chapter when we dig deeper into technical analysis. Depending on what information the
exchange decides to make available to all market participants via public market data, the
limit order book that the client builds can be slightly different from what the order book at
the exchange matching engine looks like.

Exchange market data protocols
Exchange market data protocols are not the focus of this book, so a rigorous treatment of
this topic is beyond the scope of this book. These market data protocols are outgoing
communication streams from the exchange to all market participants that are well-
documented for new participants to build their software applications to subscribe, receive,
decode, and check for errors and network losses. These are designed with latency,
throughput, error tolerance, redundancy, and many other requirements in mind.

Algorithmic Trading Fundamentals Chapter 1

[17]

Market data feed handlers
Market data feed handlers are software applications that market participants build with a
view to interfacing with the specific exchange market data protocol. These are able to
subscribe, receive, decode, and check for errors and network losses, and are designed with
latency, throughput, error tolerance, redundancy, and many other requirements in mind.

Order types
Most exchanges support a variety of orders that they accept from market participants. We
will discuss a few of the most common types in this section.

IOC – Immediate Or Cancel
These orders never get added to the book. They either match against existing resting orders
to a maximum of the IOC order size, or the rest of the incoming order gets canceled. If no
resting order is available at a price that the IOC can match against, then the IOC is canceled
in its entirety. IOC orders have the benefit of not resting in the book post matching and
causing additional complexity with order management in trading algorithms.

GTD – Good Till Day
These orders get added to the book. If they match fully against existing resting orders in the
book, then they don't get added, otherwise the remaining quantity on the order (which can
be the entire original quantity if there's no partial match) gets added to the book and sits as
resting orders that the incoming aggressors can match against. The benefits of GTD orders
are that they can take advantage of FIFO matching algorithms by having better priorities
than orders that just showed up in the book, but require more complex order management
in trading algorithms.

Stop orders
Stop orders are orders that aren't in the book until a specific price (called the stop price) is
traded in the market, at which point they become regular GTD orders at a pre-specified
price. These orders are great as exit orders (either to liquidate a losing position or to realize
profit on a winning position). We will revisit these orders after we have explained what
having a losing or winning position means and what exiting a position means.

Algorithmic Trading Fundamentals Chapter 1

[18]

Exchange order entry protocols
Exchange order entry protocols are how market participant software applications send
order requests (new, cancels, modifies) and how the exchange replies to these requests.

Order entry gateway
Order entry gateways are the market participant client applications that communicate with
the exchange matching engine over the order entry protocols. These have to deal with order
flow in a reliable manner, sending orders to the exchange, modifying and canceling those
orders, and getting notifications when these orders are accepted, canceled, executed, and so
on. Oftentimes, market participants run a second variant of order entry gateways that
simply receive order-executed notifications to check consistency against the primary order
entry gateway order flow. These are called drop-copy gateways.

Positions and profit and loss (PnL) management
Orders that get executed cause market participants to have positions in the instrument that
they got executed, for the amount the order executed, and at the price of the execution
(limit orders can match at better prices than they were entered for, but not worse). A buy
side execution is called having a long position, while a sell side execution is called having a
short position. When we have no position at all, this is referred to as being flat. Long
positions make money when market prices are higher than the price of the position, and
lose money when market prices are lower than the price of the position. Short positions,
conversely, make money when market prices go down from the price of the position and
lose money when market prices go up from the price of the position, hence, the well-known
ideas of buy low, sell high, and buy high, sell higher, and so on.

Multiple buy executions, or multiple sell executions for different amounts and prices, cause
the overall position price to be the volume weighted average of the execution prices and
quantities. This is called the Volume Weighted Average Price (VWAP) of the position.
Open positions are marked to market to get a sense of what the unrealized Profit and Loss
(PnL) of the position is. This means that current market prices are compared to the price of
the position; a long position where market prices have gone up is considered unrealized
profit, and the opposite is considered unrealized loss. Similar terms apply to short
positions. Profit or loss is realized when an open position is closed, meaning you sell to
close a long position and you buy to close a short position. At that point, the PnL is given
the term realized PnL. The total PnL at any point is the total of the realized PnLs so far and
the unrealized PnLs for open positions at the market price.

Algorithmic Trading Fundamentals Chapter 1

[19]

From intuition to algorithmic trading
Here, we will discuss how trading ideas are born and how they are turned into algorithmic
trading strategies. Fundamentally, all trading ideas are driven by human intuition to a large
extent. If markets have been moving up/down all the time, you might intuitively think that
it will continue to move in the same direction, which is the fundamental idea behind trend-
following strategies. Conversely, you might argue that if prices have moved up/down a lot,
it is mispriced and likely to move in the opposite direction, which is the fundamental idea
behind mean reversion strategies. Intuitively, you may also reason that instruments that are
very similar to one another, or loosely dependent on one another, will move together,
which is the idea behind correlation-based trading or pairs trading. Since every market
participant has their own view of the market, the final market prices are a reflection of the
majority of market participants. If your views are aligned with the majority of the market
participants, then that particular strategy is profitable in that particular instance. Of course,
no trading idea can be right all the time, and whether a strategy is profitable or not depends
on how often the idea is correct versus how often it is not correct.

Why do we need to automate trading?
Historically, human traders implemented such rule-based trading to manually enter orders,
take positions, and make profits or losses through the day. Over time, with advances in
technology, they've moved from yelling in the pits to get orders executed with other pit
traders, to calling up a broker and entering orders over the telephone, to having GUI
applications that allow entering orders through point and click interfaces.

Such manual approaches have a lot of drawbacks – humans are slow to react to markets so
they miss information or are slow to react to new information, they can't scale well or focus
on multiple things at a time, humans are prone to making mistakes, they get distracted, and
they feel a fear of losing money and a joy of making money. All of these drawbacks cause
them to deviate from a planned trading strategy, severely limiting the profitability of the
trading strategy.

Computers are extremely good at rule-based repetitive tasks. When designed and
programmed correctly, they can execute instructions and algorithms extremely quickly,
and can be scaled and deployed across a lot of instruments seamlessly. They are extremely
fast at reacting to market data, and they don't get distracted or make mistakes (unless they
were programmed incorrectly, which is a software bug and not a drawback of computers
themselves). They don't have emotions, so don't deviate from what they are programmed
to do. All of these advantages make computerized automated trading systems extremely
profitable when done right, which is where algorithmic trading starts.

Algorithmic Trading Fundamentals Chapter 1

[20]

Evolution of algorithmic trading – from rule-
based to AI
Let's take a simple example of a trend-following strategy and see how that has evolved
from a manual approach all the way to a fully automated algorithmic trading strategy.
Historically, human traders are used to having simple charting applications that can be
used to detect when trends are starting or continuing. These can be simple rules, such as if a
share rises 5% every day for a week, then it is something we should buy and hold (put on a
long position), or if a share price has dropped 10% in 2 hours, then that is something we
should sell short and wait for it to drop further. This would be a classic manual trading
strategy in the past. As we discussed previously, computers are very good at following
repetitive rule-based algorithms. Simpler rules are easier to program and require less
development time, but computer software applications are only limited by the complexity
that the software developer programming the computer can handle. At the end of this
chapter, we will deal with a realistic trading strategy written in Python, but for now, we
will continue to introduce all the ideas and concepts required prior to that.

Here is some pseudo code that implements our trend-following, human intuition trading
idea. This can then be translated into whatever language of our choosing based on our
application's needs.

We can use trend-following, which means, buying/selling when the price changes by 10%
in 2 hours. This variable tracks our current position in the market:

Current_position_ = 0;

This is the expected profit threshold for our positions. If a position is more profitable than
this threshold, we flatten the position and the unrealized profit to realized profit:

PROFIT_EXIT_PRICE_PERCENT = 0.2;

This is the maximum loss threshold for our positions. If a position is losing more than this
threshold, we flatten the position and convert the unrealized loss to realized loss. Why
would we close a position if it's losing money? The idea is simply to not lose all of our
money on one bad position, but rather cut our losses early so that we have capital to
continue trading. More on this when we dive into risk management practices in more
detail. For now, we define a parameter that is the maximum allowed loss for a position in
terms of the price change from the entry price for our position:

LOSS_EXIT_PRICE_PERCENT = -0.1;

Algorithmic Trading Fundamentals Chapter 1

[21]

Note that in the thresholds we saw, we expect to make more money on our
winning/profitable positions than we expect to lose on our losing positions. This is not
always symmetrical, but we will address the distributions of winning and losing positions
when we look into these trading strategies in greater detail later in this book. This is a
method/callback that is invoked every time the market prices change. We need to check
whether our signal causes an entry and whether one of our open positions needs to be
closed for PnL reasons:

def OnMarketPriceChange(current_price, current_time):

First, check whether we are flat and prices have moved up more than 10%. This is our entry
signal to go long, so we will send a buy order and update our position. Technically, we
should not update our position until the exchange confirms that our order matched, but for
the sake of simplicity in this first-pass pseudo code, we ignore that complexity and address
it later:

If Current_position_ == 0 AND (current_price - price_two_hours_ago) /
current_price >; 10%:
 SendBuyOrderAtCurrentPrice();
 Current_position_ = Current_position_ + 1;

Now, check whether we are flat and prices have moved down more than 10%. This is our
entry signal to go short, so we will send a sell order and update our position:

Else If Current_position_ == 0 AND (current_price - price_two_hours_ago)
/ current_price < -10%:
 SendSellOrderAtCurrentPrice();
 Current_position_ = Current_position_ - 1;

If we are currently long, and market prices have moved in a favorable direction, check
whether this position's profitability exceeds predetermined thresholds. In that case, we will
send a sell order to flatten our position and convert our unrealized profit to realized profit:

If Current_position_ >; 0 AND current_price - position_price >;
PROFIT_EXIT_PRICE_PERCENT:
 SendSellOrderAtCurrentPrice();
 Current_position_ = Current_position_ - 1;

If we are currently long, and market prices have moved against us, check whether this
position loss exceeds predetermined thresholds. In that case, we will send a sell order to
flatten our position and convert our unrealized loss to realized loss.

Else If Current_position_ >; 0 AND current_price - position_price <
LOSS_EXIT_PRICE_PERCENT::
 SendSellOrderAtCurrentPrice();
 Current_position_ = Current_position_ - 1;

Algorithmic Trading Fundamentals Chapter 1

[22]

If we are currently short, and market prices have moved in a favorable direction, check
whether this position profitability exceeds predetermined thresholds. In that case, we will
send a buy order to flatten our position and convert our unrealized profit to realized profit:

Else If Current_position_ < 0 AND position_price - current_price >;
PROFIT_EXIT_PRICE_PERCENT:
 SendBuyOrderAtCurrentPrice();
 Current_position_ = Current_position_ - 1;

If we are currently short, and market prices have moved against us, check whether this
position loss exceeds predetermined thresholds. In that case, we will send a buy order to
flatten our position and convert our unrealized loss to realized loss:

Else If Current_position_ < 0 AND position_price - current_price <
LOSS_EXIT_PRICE_PERCENT:
 SendBuyOrderAtCurrentPrice();
 Current_position_ = Current_position_ - 1;

Components of an algorithmic trading
system
In an earlier section, we provided a top-level view of the entire algorithmic trading setup
and many of the different components involved. In practice, a complete algorithmic trading
setup is divided into two sections, as shown in the following diagram:

Core infrastructure deals with exchange-facing market data protocol integration,
market data feed handlers, internal market data format normalization, historical
data recording, instrument definition recording and dissemination, exchange
order entry protocols, exchange order entry gateways, core side risk systems,
broker-facing applications, back office reconciliation applications, addressing
compliance requirements, and others.
Algorithmic trading strategy components deal with using normalized market
data, building order books, generating signals from incoming market data and
order flow information, the aggregation of different signals, efficient execution
logic built on top of statistical predictive abilities (alpha), position and PnL
management inside the strategies, risk management inside the strategies,
backtesting, and historical signal and trading research platforms:

Algorithmic Trading Fundamentals Chapter 1

[23]

Market data subscription
These components are responsible for interacting with the feed handler components that
publish normalized data. This data can be delivered over a network or locally using a
variety of Inter-Process Communication (IPC) mechanisms from the feed handlers. We do
not go into great detail about this here. Low latency delivery and scalability are the major
driving design decisions in this regard.

Limit order books
Once the trading strategy gets normalized market data, it uses that data to build and
maintain limit order books for each instrument. Depending on the sophistication and
complexity of the limit order books, it can be simple enough such that it tells us how many
participants there are on each side, or sophisticated enough to track market participant
order priorities as well as track our own orders in the limit order book.

Algorithmic Trading Fundamentals Chapter 1

[24]

Signals
Once limit order books are built, every time they are updated due to new incoming market
data information, we build signals using the new information.

Signals are called by various names—signals, indicators, predictors, calculators, features,
alpha, and so on—but they all have roughly the same meaning.

A trading signal is a well-defined piece of intelligence that is derived from incoming market
data information, limit order books or trade information that allows a trading strategy to
get a statistical edge (advantage) vis-à-vis other market participants and, thus, increased
profitability. This is one of the areas where a lot of trading teams focus much of their time
and energy. The key is to build a lot of signals in order to have an edge over the
competition as well as keep adapting existing signals and adding new signals to deal with
changing market conditions and market participants. We will revisit this in one of the later
chapters, as this will be a large focus of this book.

Signal aggregators
Often, a lot of algorithmic trading systems combine a lot of different kinds of signals in
order to gain a bigger edge than individual signals provide. The approach is to essentially
combine different signals that have different predictive abilities/advantages under different
market conditions. There are many different ways to combine individual signals. You can
use classical statistical learning methods to generate linear and non-linear combinations to
output classification or regression output values that represent a combination of individual
signals. Machine learning is not the focus of this book, so we avoid diving too deep into this
topic, but we will revisit it briefly in a later section.

Execution logic
Another key component of algorithmic trading is quickly and efficiently managing orders
based on signals in order to gain an edge over the competition. It is important to react to
changing market data, changing signal values in a fast but intelligent manner. Oftentimes,
speed and sophistication are two competing goals, and good execution logic will try to
balance the two objectives in an optimal manner. It is also extremely important to disguise
our intentions/intelligence from other market participants so that we get the best executions
possible.

Algorithmic Trading Fundamentals Chapter 1

[25]

Remember that other market competitors can observe what orders are sent to the exchange
and assess the potential impact it might have, so this component needs to be intelligent
enough to not make it obvious what our trading strategy is doing. Slippage and fees are
also very important factors as far as execution logic design is concerned.

Slippage is defined as the difference in the expected price of a trade and the price at which
the trade is actually executed. This can happen for predominantly two reasons:

If the order reaches the exchange later than expected (latency), then it might end
up either not executing at all, or executing at a worse price than you might
expect.
If the order is very large such that it executes at multiple prices, then the VWAP
of the entire execution may be significantly different from the market price
observed when the order was sent.

Slippage obviously causes losses that might not have been correctly factored in, in addition
to difficulty liquidating positions. As the position sizes for trading algorithms scale up,
slippage becomes a larger problem.

Fees are another issue with executing orders efficiently. Typically, there are exchange fees
and broker fees proportional to the size of the orders and the total volume traded.

Again, as the position sizes for trading algorithms scale up, trading volumes typically
increase and fees increase along with it. Oftentimes, a good trading strategy can end up
being non-profitable because it trades too much and accumulates a lot of trading fees.
Again, a good execution logic seeks to minimize the fees paid.

Position and PnL management
All algorithmic trading strategies need to track and manage their positions and PnLs
effectively. Depending on the actual trading strategy, this can often range in complexity.

For more sophisticated trading strategies, such as pairs trading (curve trading is another
similar strategy), you have to track positions and PnLs on multiple instruments and often,
these positions and PnLs offset one another and introduce complexity/uncertainty as
regards determining true positions and PnLs. We will explore these issues when we talk in
detail about these strategies in Chapter 4, Classical Trading Strategies Driven by Human
Intuition, but for now, we won't discuss this in too much detail.

Algorithmic Trading Fundamentals Chapter 1

[26]

Risk management
Good risk management is one of the cornerstones of algorithmic trading. Bad risk
management practices can turn potential profitable strategies into non-profitable ones.
There is an even bigger risk of violating rules and regulations at trading exchanges that can
often lead to legal actions and huge penalties. Finally, one of the biggest risks with high-
speed automated algorithmic trading is that poorly programmed computer software is
prone to bugs and errors. There are many instances of entire firms shutting down due to
automated high-speed algorithmic trading systems that run amok. Hence, risk
management systems need to be built to be extremely robust, feature rich, and have
multiple layers of redundancy. There also needs to be a very high level of testing, stress
testing, and strict change management to minimize the possibility of risk systems failing. In
Chapter 6, Managing the Risk of Algorithmic Strategies, of this book, we will have an entire
section dedicated to best risk management practices so as to maximize the profitability of
trading strategies as well as avoid common pitfalls resulting in losses or bankruptcy.

Backtesting
When researching an automated trading strategy for expected behavior, a key component
in a good algorithmic trading research system is a good backtester. A backtester is used to
simulate automated trading strategy behavior and retrieve statistics on expected PnLs,
expected risk exposure, and other metrics based on historically recorded market data. The
basic idea is to answer the question: given historical data, what kind of performance would
a specific trading strategy have? This is built by recording historical market data accurately,
having a framework to replay it, having a framework that can accept simulated order flow
from potential trading strategies, and mimicking how a trading exchange would match this
strategy's order flow in the presence of other market participants as specified in the
historical market data. It is also a good place to try out different trading strategies to see
what ideas work before deploying them to market.

Building and maintaining a highly accurate backtester is one of the most complicated tasks
involved in setting up an algorithmic trading research system. It has to accurately simulate
things such as software latencies, network latencies, accurate FIFO priorities for orders,
slippage, fees, and, in some cases, also the market impact caused by the order flow for the
strategy under consideration (that is, how the other market participants may react in the
presence of this strategy's order flow and trading activity). We will revisit backtesting at the
end of this chapter and then again in later chapters in this book. Finally, we explain
practical issues faced in setting up and calibrating a backtester, their impact on an
algorithmic trading strategy, and what approaches best minimize damage caused due to
inaccurate backtesting.

Algorithmic Trading Fundamentals Chapter 1

[27]

Why Python?
Python is the most widely used programming language in the world (one-third of new
software development uses this language):

This language is very simple to learn. Python is an interpreted, high-level programming
language with type inference. Unlike C/C++, where you need to focus on memory
management and the hardware features of the machine you are using to code, Python takes
care of the internal implementation, such as memory management. As a result, this type of
language will ease the focus on coding trading algorithms. Python is versatile; it can be
used in any domain for any application development. Since Python has been widely used
for years, the community of programmers is large enough to get many critical libraries for
your trading strategy, ranging from data analytics, machine learning, data extraction, and
runtime to communication; the list of open source libraries is gigantic. Additionally, on the
software engineering side, Python includes paradigms used in other languages, such as
object-oriented, functional, and dynamic types. The online resources for Python are
unlimited, and tons of book will drive you through any domains where you can use
Python. Python is not the only language using in trading. We will preferably use Python (or
eventually R) to do data analysis and to create trading models. We will use C, C++, or Java
in trading for production code. These language will compile source code into executable or
byte codes. Consequently, the software will be one hundred times faster than Python or R.
Even if these three last languages are faster than Python, we will use all of them to create
libraries. We will wrap these libraries to be used with Python (or R).

Algorithmic Trading Fundamentals Chapter 1

[28]

When choosing Python, we also need to choose the version of the language. While Python 2
is the most commonly used Python standard, Python 3 should take over in a few years. The
Python community develops Python 3 libraries. Tech firms have started their migration
toward this version. After 2020, Python 2.X will no longer be maintained. Therefore, if you
are a new programmer, it is recommended to learn Python 3 over Python 2.

Both Python and R are among the most popular languages for assisting quantitative
researchers (or quantitative developers) in creating trading algorithms. It provides a ton of
support libraries for data analysis or machine learning. Choosing between these two
languages will depend on which side of the community you are on. We always associate
Python with a general-purpose language with an understandable syntax and simplicity,
while R was developed with statisticians as an end user by giving emphasis to data
visualization. Even if Python can also give you the same visualization experience, R was
designed for this purpose.

R is not significantly more recent than Python. It was released in 1995 by the two founders,
Ross Ihaka and Robert Gentleman, while Python was released in 1991 by Guido Van
Rossum. Today, R is mainly used by the academic and research world.

Unlike many other languages, Python and R allows us to write a statistical model with a
few lines of code. Because it is impossible to choose one over the other, since they both have
their own advantages, they can easily be used in a complementary manner. Developers
created a multitude of libraries capable of easily using one language in conjunction with the
other without any difficulties.

Choice of IDE – Pycharm or Notebook
While RStudio became the standard IDE (Integrated Development Environment) for R,
choosing between JetBrains PyCharm and Jupyter Notebook is much more challenging. To
begin with, we need to talk about the features of these two different IDEs. PyCharm was
developed by the Czech company JetBrains, and is a text editor providing code analysis, a
graphical debugger, and an advanced unit tester. Jupyter Notebook is a non-profit
organization that created a web-based interactive computational environment for the
following three languages: Julia, Python, and R. This software helps you to code Python by
giving you a web-based interface where you will run the Python code line by line.

The major difference between these two IDEs is that PyCharm became a reference IDE
among programmers, since the version control system and the debugger are an important
part of this product. Additionally, PyCharm can easily handle a large code base and has a
ton of plugins.

Algorithmic Trading Fundamentals Chapter 1

[29]

Jupyter Notebook is a friendly choice when data analysis is the only motivation, while
PyCharm doesn't have the same user-friendly interface to run code line by line for data
analytics. The features that PyCharm provides are the most frequently used in the Python
programming world.

Our first algorithmic trading (buy when the price
is low, and sell when the price is high)
You may now feel that you are impatient to make money, and you may also be thinking
When can you start doing so?

We have talked about what we will address in this book. In this section, we will start
building our first trading strategy, called buy low, sell high.

Building a trading strategy takes time and goes through numerous steps:

You need an original idea. This part will use a well-known money-making1.
strategy: we buy an asset with a price lower than the one we will use to sell it.
For the purpose of illustrating this idea, we will be using Google stock.
Once we get the idea, we need data to validate the idea. In Python, there are2.
many packages that we can use, to get trading data.
You will then need to use a large amount of historical data to backtest your3.
trading strategy assuming this rule: what worked in the past will work in the
future.

Setting up your workspace
For this book, we have picked PyCharm as the IDE. We will go through all the examples
using this tool.

You can find videos on the JetBrains website: https://blog.jetbrains.com/pycharm/
2016/01/introducing-getting-started-with-pycharm-video-tutorials/.

https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/
https://blog.jetbrains.com/pycharm/2016/01/introducing-getting-started-with-pycharm-video-tutorials/

Algorithmic Trading Fundamentals Chapter 1

[30]

PyCharm 101
Once PyCharm is loaded, you will need to create a project and choose an interpreter. As we
previously discussed, you will need to choose a version of Python 3. At the time of writing
this book, the most up-to-date version is Python 3.7.0, but feel free to start with a more
recent version than this one. Once the project is open, you need to create a Python file that
you will call buylowsellhigh.py. This file will contain the code of your first Python
implementation.

Getting the data
Many libraries can help download financial data; our choice though is to use the pandas
library. This software Python library is well known for data manipulation and analysis. We
will use the DataReader function, which is capable of connecting to a financial news server
such as Yahoo, Google, and many others, and then downloading the data that you will
need for the example of this book. DataReader takes four arguments in this example:

The first one is the symbol (our example uses GOOG for Google) you would like to1.
use for analysis.
The second specifies the source for retrieving the data, and then you will specify2.
the range of days to get the data.
The third specifies the starting data from which to fetch historical data.3.
The fourth and final argument specifies the end data for the historical data series:4.

loading the class data from the package pandas_datareader
from pandas_datareader import data
First day
start_date = '2014-01-01'
Last day
end_date = '2018-01-01'
Call the function DataReader from the class data
goog_data = data.DataReader('GOOG', 'yahoo', start_date, end_date)

The goog_data variable is the data frame containing the Google data from January 1, 2014
to January 1, 2018. If you print the goog_data variable, you will see the following:

print(goog_data)
 High Low ... Volume Adj Close
Date ...
2010-01-04 312.721039 310.103088 ... 3937800.0 311.349976
2010-01-05 311.891449 308.761810 ... 6048500.0 309.978882
2010-01-06 310.907837 301.220856 ... 8009000.0 302.164703
2010-01-07 303.029083 294.410156 ... 12912000.0 295.130463

Algorithmic Trading Fundamentals Chapter 1

[31]

If you would like to see all the columns, you should change the option of the
pandas library by allowing more than four displayed columns:

import pandas as pd
pd.set_printoptions(max_colwidth, 1000)
pd.set_option('display.width', 1000)
 High Low Open Close Volume Adj Close
Date
2010-01-04 312.721039 310.103088 311.449310 311.349976 3937800.0
311.349976
2010-01-05 311.891449 308.761810 311.563568 309.978882 6048500.0
309.978882
2010-01-06 310.907837 301.220856 310.907837 302.164703 8009000.0
302.164703
2010-01-07 303.029083 294.410156 302.731018 295.130463 12912000.0
295.130463

As per the previous output, there are six columns:

High: The highest price of the stock on that trading day.
Low: The lowest price of the stock on that trading day.
Close: The price of the stock at closing time.
Open: The price of the stock at the beginning of the trading day (closing price of
the previous trading day).
Volume: How many stocks were traded.
Adj Close: The closing price of the stock that adjusts the price of the stock for
corporate actions. This price takes into account the stock splits and dividends.

The adjusted close is the price we will use for this example. Indeed, since it takes into
account splits and dividends, we will not need to adjust the price manually.

Preparing the data – signal
The main part of a trading strategy (or a trading algorithm) is to decide when to trade
(either to buy or sell a security or other asset). The event triggering the sending of an order
is called a signal. A signal can use a large variety of inputs. These inputs may be market
information, news, or a social networking website. Any combination of data can be a signal.

Algorithmic Trading Fundamentals Chapter 1

[32]

From the section entitled Our first algorithmic trading (buy when the price is low, and sell when
the price is high), for the buy low sell high example, we will calculate the difference in the
adjusted close between two consecutive days. If the value of the adjusted close is negative,
this means the price on the previous day was higher than the price the following day, so we
can buy since the price is lower now. If this value is positive, this means that we can sell
because the price is higher.

In Python, we are building a pandas data frame getting the same dimension as the data
frame containing the data. This data frame will be called goog_data_signal:

goog_data_signal = pd.DataFrame(index=goog_data.index)

Following the creation of this data frame, we will copy the data we will use to build our
signal to trade. In this case, we will copy the values of the Adj Close column from the
goog_data data frame:

goog_data_signal['price'] = goog_data['Adj Close']

Based on our trading strategy, we need to have a column, daily_difference, to store the
difference between two consecutive days. In order to create this column, we will use the
diff function from the data frame object:

goog_data_signal['daily_difference'] = goog_data_signal['price'].diff()

As a sanity check, we can use the print function to display what goog_data_signal
contains:

print(goog_data_signal.head())
 price daily_difference
Date
2014-01-02 552.963501 NaN
2014-01-03 548.929749 -4.033752
2014-01-06 555.049927 6.120178
2014-01-07 565.750366 10.700439
2014-01-08 566.927673 1.177307

We can observe that the daily_difference column has a non-numerical value for
January 2, since it is the first row in this data frame.

Algorithmic Trading Fundamentals Chapter 1

[33]

We will create the signal based on the values of the column, daily_difference. If the
value is positive, we will give the value 1, otherwise, the value will remain 0:

goog_data_signal['signal'] = 0.0
goog_data_signal['signal'] = np.where(goog_data_signal['daily_difference']
>; 0, 1.0, 0.0)
 price daily_difference signal
Date
2014-01-02 552.963501 NaN 0.0
2014-01-03 548.929749 -4.033752 0.0
2014-01-06 555.049927 6.120178 1.0
2014-01-07 565.750366 10.700439 1.0
2014-01-08 566.927673 1.177307 1.0

Reading the column signal, we have 0 when we need to buy, and we have 1 when we need
to sell.

Since we don't want to constantly buy if the market keeps moving down, or constantly sell
when the market is moving up, we will limit the number of orders by restricting ourselves
to the number of positions on the market. The position is your inventory of stocks or assets
that you have on the market. For instance, if you buy one Google share, this means you
have a position of one share on the market. If you sell this share, you will not have any
positions on the market.

To simplify our example and limit the position on the market, it will be impossible to buy
or sell more than one time consecutively. Therefore, we will apply diff() to the column
signal:

goog_data_signal['positions'] = goog_data_signal['signal'].diff()
 price daily_difference signal positions
Date
2014-01-02 552.963501 NaN 0.0 NaN
2014-01-03 548.929749 -4.033752 0.0 0.0
2014-01-06 555.049927 6.120178 1.0 1.0
2014-01-07 565.750366 10.700439 1.0 0.0
2014-01-08 566.927673 1.177307 1.0 0.0
2014-01-09 561.468201 -5.459473 0.0 -1.0
2014-01-10 561.438354 -0.029846 0.0 0.0
2014-01-13 557.861633 -3.576721 0.0 0.0

We will buy a share of Google on January 6 for a price of 555.049927, and then sell this
share for a price of 561.468201. The profit of this trade is
561.468201-555.049927=6.418274.

Algorithmic Trading Fundamentals Chapter 1

[34]

Signal visualization
While creating signals is just the beginning of the process of building a trading strategy, we
need to visualize how the strategy performs in the long term. We will plot the graph of the
historical data we used by using the matplotlib library. This library is well known in the
Python world for making it easy to plot charts:

We will start by importing this library:1.

import matplotlib.pyplot as plt

Next, we will define a figure that will contain our chart:2.

fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Google price in $')

Now, we will plot the price within the range of days we initially chose:3.

goog_data_signal['price'].plot(ax=ax1, color='r', lw=2.)

Next, we will draw an up arrow when we buy one Google share:4.

ax1.plot(goog_data_signal.loc[goog_data_signal.positions ==
1.0].index,
 goog_data_signal.price[goog_data_signal.positions == 1.0],
 '^', markersize=5, color='m')

Next, we will draw a down arrow when we sell one Google share:5.

ax1.plot(goog_data_signal.loc[goog_data_signal.positions ==
-1.0].index,
 goog_data_signal.price[goog_data_signal.positions == -1.0],
 'v', markersize=5, color='k')
plt.show()

Algorithmic Trading Fundamentals Chapter 1

[35]

This code will return the following output. Let's have a look at the following plot:

Up to this point, we introduced the trading idea, we implemented the signal triggering buy
and sell orders, and we talked about the way of restricting the strategy by limiting the
position to one share on the market. Once these steps are satisfactory, the following step is
backtesting.

Backtesting
Backtesting is a key phase to get statistics showing how effective the trading strategy is. As
we previously learned, the backtesting relies on the assumption that the past predicts the
future. This phase will provide the statistics that you or your company consider important,
such as the following:

Profit and loss (P and L): The money made by the strategy without transaction
fees.
Net profit and loss (net P and L): The money made by the strategy with
transaction fees.
Exposure: The capital invested.
Number of trades: The number of trades placed during a trading session.

Algorithmic Trading Fundamentals Chapter 1

[36]

Annualized return: This is the return for a year of trading.
Sharpe ratio: The risk-adjusted return. This date is important because it
compares the return of the strategy with a risk-free strategy.

While this part will be described in detail later, for this section, we will be interested in
testing our strategy with an initial capital over a given period of time.

For the purpose of backtesting, we will have a portfolio (grouping of financial assets such
as bonds and stocks) composed of only one type of stock: Google (GOOG). We will start
this portfolio with $1,000:

initial_capital = float(1000.0)

Now, we will create a data frame for the positions and the portfolio:

positions = pd.DataFrame(index=goog_data_signal.index).fillna(0.0)
portfolio = pd.DataFrame(index=goog_data_signal.index).fillna(0.0)

Next, we will store the GOOG positions in the following data frame:

positions['GOOG'] = goog_data_signal['signal']

Then, we will store the amount of the GOOG positions for the portfolio in this one:

portfolio['positions'] = (positions.multiply(goog_data_signal['price'],
axis=0))

Next, we will calculate the non-invested money (cash):

portfolio['cash'] = initial_capital -
(positions.diff().multiply(goog_data_signal['price'], axis=0)).cumsum()

The total investment will be calculated by summing the positions and the cash:

portfolio['total'] = portfolio['positions'] + portfolio['cash']

When we draw the following plot, we can easily establish that our strategy is profitable:

Algorithmic Trading Fundamentals Chapter 1

[37]

When we create a trading strategy, we have an initial amount of money (cash). We will
invest this money (holdings). This holding value is based on the market value of the
investment. If we own a stock and the price of this stock increases, the value of the holding
will increase. When we decide to sell, we move the value of the holding corresponding to
this sale to the cash amount. The sum total of the assets is the sum of the cash and the
holdings. The preceding chart shows that the strategy is profitable since the amount of cash
increases toward the end. The graph allows you to check whether your trading idea can
generate money.

Summary
During this chapter, you were introduced to the trading world. You learned why people
trade and you are capable of describing the critical actors and the trading systems with
which you will interact during your life as an algorithm trading designer. You were
exposed to the tools you will use in this book to build your trading robot. Finally, you
encountered your first implementation of algorithmic trading by coding your first trading
strategy implementing the economic idea of buying low and selling high. We observed that
this strategy was far from being a profitable and safe strategy.

In the next chapter, we will address how to make a strategy more advanced, linked to more
sophisticated trading ideas, while implementing these strategies in Python.

2
Section 2: Trading Signal

Generation and Strategies
In this section, you will learn how quantitative trading signals and trading strategies are
developed. Learning can be applied to market research and the design of algorithmic
strategies.

This section comprises the following chapters:

Chapter 2, Deciphering the Markets with Technical Analysis
Chapter 3, Predicting the Markets with Basic Machine Learning

2
Deciphering the Markets with

Technical Analysis
In this chapter, we will go through some popular methods of technical analysis and show
how to apply them while analyzing market data. We will perform basic algorithmic trading
using market trends, support, and resistance.

You may be thinking of how we can come up with our own strategies? And are there any
naive strategies that worked in the past that we can use by way of reference?

As you read in the first chapter of this book, mankind has been trading assets for centuries.
Numerous strategies have been created to increase the profit or sometimes just to keep the
same profit. In this zero-sum game, the competition is considerable. It necessitates a
constant innovation in terms of trading models and also in terms of technology. In this race
to get the biggest part of the pie first, it is important to know the basic foundation of
analysis in order to create trading strategies. When predicting the market, we mainly
assume that the past repeats itself in future. In order to predict future prices and volumes,
technical analysts study the historical market data. Based on behavioral economics and
quantitative analysis, the market data is divided into two main areas.

First, are chart patterns. This side of technical analysis is based on recognizing trading
patterns and anticipating when they will reproduce in the future. This is usually more
difficult to implement.

Second, are technical indicators. This other side uses mathematical calculation to forecast
the financial market direction. The list of technical indicators is sufficiently long to fill an
entire book on this topic alone, but they are composed of a few different principal domains:
trend, momentum, volume, volatility, and support and resistance. We will focus on the
support and resistance strategy as an example to illustrate one of the most well-known
technical analysis approaches.

Deciphering the Markets with Technical Analysis Chapter 2

[40]

In this chapter, we will cover the following topics:

Designing a trading strategy based on trend-and momentum-based indicators
Creating trading signals based on fundamental technical analysis
Implementing advanced concepts, such as seasonality, in trading instruments

Designing a trading strategy based on trend-
and momentum-based indicators
Trading strategies based on trend and momentum are pretty similar. If we can use a
metaphor to illustrate the difference, the trend strategy uses speed, whereas the momentum
strategy uses acceleration. With the trend strategy, we will study the price historical data. If
this price keeps increasing for the last fixed amount of days, we will open a long position
by assuming that the price will keep raising.

The trading strategy based on momentum is a technique where we send orders based on
the strength of past behavior. The price momentum is the quantity of motion that a price
has. The underlying rule is to bet that an asset price with a strong movement in a given
direction will keep going in the same direction in the future. We will review a number of
technical indicators expressing momentum in the market. Support and resistance are
examples of indicators predicting future behavior.

Support and resistance indicators
In the first chapter, we explained the principle of the evolution of prices based on supply
and demand. The price decreases when there is an increase in supply, and the price
increases when demand rises. When there is a fall in price, we expect the price fall to pause
due to a concentration of demands. This virtual limit will be referred to as a support line.
Since the price becomes lower, it is more likely to find buyers. Inversely, when the price
starts rising, we expect a pause in this increase due to a concentration of supplies. This is
referred to as the resistance line. It is based on the same principle, showing that a high price
leads sellers to sell. This exploits the market psychology of investors following this trend of
buying when the price is low and selling when the price is high.

Deciphering the Markets with Technical Analysis Chapter 2

[41]

To illustrate an example of a technical indicator (in this part, support and resistance), we
will use the Google data from the first chapter. Since you will use the data for testing many
times, you should store this data frame to your disk. Doing this will help you save time
when you want to replay the data. To avoid complications with stock split, we will only
take dates without splits. Therefore, we will keep only 620 days. Let's have a look at the
following code:

import pandas as pd
from pandas_datareader import data

start_date = '2014-01-01'
end_date = '2018-01-01'
SRC_DATA_FILENAME='goog_data.pkl'

try:
 goog_data2 = pd.read_pickle(SRC_DATA_FILENAME)
except FileNotFoundError:
 goog_data2 = data.DataReader('GOOG', 'yahoo', start_date, end_date)
 goog_data2.to_pickle(SRC_DATA_FILENAME)

goog_data=goog_data2.tail(620)
lows=goog_data['Low']
highs=goog_data['High']

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Google price in $')
highs.plot(ax=ax1, color='c', lw=2.)
lows.plot(ax=ax1, color='y', lw=2.)
plt.hlines(highs.head(200).max(),lows.index.values[0],lows.index.values[-1]
,linewidth=2, color='g')
plt.hlines(lows.head(200).min(),lows.index.values[0],lows.index.values[-1],
linewidth=2, color='r')
plt.axvline(linewidth=2,color='b',x=lows.index.values[200],linestyle=':')
plt.show()

In this code, the following applies:

This retrieves the financial data from the Yahoo finance website between January
1, 2014 and January 1, 2018.

Deciphering the Markets with Technical Analysis Chapter 2

[42]

We used the maximum and minimum values to create the support and the
resistance limits, as shown in the following plot:

In this plot, the following applies:

We draw the highs and lows of the GOOG price.
The green line represents the resistance level, and the red line represents the
support level.
To build these lines, we use the maximum value of the GOOG price and the
minimum value of the GOOG price stored daily.
After the 200th day (dotted vertical blue line), we will buy when we reach the
support line, and sell when we reach the resistance line. In this example, we used
200 days so that we have sufficient data points to get an estimate of the trend.
It is observed that the GOOG price will reach the resistance line around August
2016. This means that we have a signal to enter a short position (sell).
Once traded, we will wait to get out of this short position when the GOOG price
will reach the support line.
With this historical data, it is easily noticeable that this condition will not happen.
This will result in carrying a short position in a rising market without having any
signal to sell it, thereby resulting in a huge loss.

Deciphering the Markets with Technical Analysis Chapter 2

[43]

This means that, even if the trading idea based on support/resistance has strong
grounds in terms of economical behavior, in reality, we will need to modify this
trading strategy to make it work.
Moving the support/resistance line to adapt to the market evolution will be key
to the trading strategy efficiency.

In the middle of the following chart, we show three fixed-size time windows. We took care
of adding the tolerance margin that we will consider to be sufficiently close to the limits
(support and resistance):

If we take a new 200-day window after the first one, the support/resistance levels will be
recalculated. We observe that the trading strategy will not get rid of the GOOG position
(while the market keeps raising) since the price does not go back to the support level.

Since the algorithm cannot get rid of a position, we will need to add more parameters to
change the behavior in order to enter a position. The following parameters can be added to
the algorithm to change its position:

There can be a shorter rolling window.
We can count the number of times the price reaches a support or resistance line.
A tolerance margin can be added to consider that a support or resistance value
can attain around a certain percentage of this value.

Deciphering the Markets with Technical Analysis Chapter 2

[44]

This phase is critical when creating your trading strategy. You will start by observing how
your trading idea will perform using historical data, and then you will increase the number
of parameters of this strategy to adjust to more realistic test cases.

In our example, we can introduce two further parameters:

The minimum number of times that a price needs to reach the support/resistance
level.
We will define the tolerance margin of what we consider being close to the
support/resistance level.

Let's now have a look at the code:

import pandas as pd
import numpy as np
from pandas_datareader import data

start_date = '2014-01-01'
end_date = '2018-01-01'
SRC_DATA_FILENAME='goog_data.pkl'

try:
 goog_data = pd.read_pickle(SRC_DATA_FILENAME)
 print('File data found...reading GOOG data')
except FileNotFoundError:
 print('File not found...downloading the GOOG data')
 goog_data = data.DataReader('GOOG', 'yahoo', start_date, end_date)
 goog_data.to_pickle(SRC_DATA_FILENAME)

goog_data_signal = pd.DataFrame(index=goog_data.index)
goog_data_signal['price'] = goog_data['Adj Close']

In the code, the data is collected by using the pandas_datareader library and by using the
class. Now, let's have a look at the other part of the code where we will implement the
trading strategy:

def trading_support_resistance(data, bin_width=20):
 data['sup_tolerance'] = pd.Series(np.zeros(len(data)))
 data['res_tolerance'] = pd.Series(np.zeros(len(data)))
 data['sup_count'] = pd.Series(np.zeros(len(data)))
 data['res_count'] = pd.Series(np.zeros(len(data)))
 data['sup'] = pd.Series(np.zeros(len(data)))
 data['res'] = pd.Series(np.zeros(len(data)))
 data['positions'] = pd.Series(np.zeros(len(data)))
 data['signal'] = pd.Series(np.zeros(len(data)))
 in_support=0
 in_resistance=0

Deciphering the Markets with Technical Analysis Chapter 2

[45]

 for x in range((bin_width - 1) + bin_width, len(data)):
 data_section = data[x - bin_width:x + 1]
 support_level=min(data_section['price'])
 resistance_level=max(data_section['price'])
 range_level=resistance_level-support_level
 data['res'][x]=resistance_level
 data['sup'][x]=support_level
 data['sup_tolerance'][x]=support_level + 0.2 * range_level
 data['res_tolerance'][x]=resistance_level - 0.2 * range_level

 if data['price'][x]>=data['res_tolerance'][x] and\
 data['price'][x] <= data['res'][x]:
 in_resistance+=1
 data['res_count'][x]=in_resistance
 elif data['price'][x] <= data['sup_tolerance'][x] and \
 data['price'][x] >= data['sup'][x]:
 in_support += 1
 data['sup_count'][x] = in_support
 else:
 in_support=0
 in_resistance=0
 if in_resistance>2:
 data['signal'][x]=1
 elif in_support>2:
 data['signal'][x]=0
 else:
 data['signal'][x] = data['signal'][x-1]

 data['positions']=data['signal'].diff()

trading_support_resistance(goog_data_signal)

In the preceding code, the following applies:

The trading_support_resistance function defines the time window in the
price that is used to calculate the resistance and support levels.
The level of support and resistance is calculated by taking the maximum and
minimum price and then subtracting and adding a 20% margin.
We used diff to know when we place the orders.
When the price is below/above the support/resistance, we will enter a long/short
position. For that, we will have 1 for a long position and 0 for a short position.

Deciphering the Markets with Technical Analysis Chapter 2

[46]

The code will print the chart representing the time when orders go out:

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Google price in $')
goog_data_signal['sup'].plot(ax=ax1, color='g', lw=2.)
goog_data_signal['res'].plot(ax=ax1, color='b', lw=2.)
goog_data_signal['price'].plot(ax=ax1, color='r', lw=2.)
ax1.plot(goog_data_signal.loc[goog_data_signal.positions == 1.0].index,
 goog_data_signal.price[goog_data_signal.positions == 1.0],
 '^', markersize=7, color='k',label='buy')
ax1.plot(goog_data_signal.loc[goog_data_signal.positions == -1.0].index,
 goog_data_signal.price[goog_data_signal.positions == -1.0],
 'v', markersize=7, color='k',label='sell')
plt.legend()
plt.show()

The codes will return the following output. The plot shows a 20-day rolling window
calculating resistance and support:

From this plot, it is observed that a buy order is sent when a price stays in the resistance
tolerance margin for 2 consecutive days, and that a sell order is sent when a price stays in
the support tolerance margin for 2 consecutive days.

Deciphering the Markets with Technical Analysis Chapter 2

[47]

In this section, we learned the difference between trend and momentum trading strategies,
and we implemented a very well used momentum trading strategy based on support and
resistance levels. We will now explore new ideas to create trading strategies by using more
technical analysis.

Creating trading signals based on
fundamental technical analysis
This section will show you how to use technical analysis to build trading signals. We will
start with one of the most common methods, the simple moving average, and we will
discuss more advanced techniques along the way. Here is a list of the signals we will cover:

Simple Moving Average (SMA)
Exponential Moving Average (EMA)
Absolute Price Oscillator (APO)
Moving Average Convergence Divergence (MACD)
Bollinger Bands (BBANDS)
Relative Strength Indicator (RSI)
Standard Deviation (STDEV)
Momentum (MOM)

Simple moving average
Simple moving average, which we will refer to as SMA, is a basic technical analysis
indicator. The simple moving average, as you may have guessed from its name, is
computed by adding up the price of an instrument over a certain period of time divided by
the number of time periods. It is basically the price average over a certain time period, with
equal weight being used for each price. The time period over which it is averaged is often
referred to as the lookback period or history. Let's have a look at the following formula of
the simple moving average:

Deciphering the Markets with Technical Analysis Chapter 2

[48]

Here, the following applies:

: Price at time period i

: Number of prices added together or the number of time periods

Let's implement a simple moving average that computes an average over a 20-day moving
window. We will then compare the SMA values against daily prices, and it should be easy
to observe the smoothing that SMA achieves.

Implementation of the simple moving average
In this section, the code demonstrates how you would implement a simple moving average,
using a list (history) to maintain a moving window of prices and a list (SMA values) to
maintain a list of SMA values:

import statistics as stats

time_period = 20 # number of days over which to average
history = [] # to track a history of prices
sma_values = [] # to track simple moving average values

for close_price in close:
 history.append(close_price)
 if len(history) > time_period: # we remove oldest price because we only
average over last 'time_period' prices
 del (history[0])

 sma_values.append(stats.mean(history))

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data = goog_data.assign(Simple20DayMovingAverage=pd.Series(sma_values,
index=goog_data.index))
close_price = goog_data['ClosePrice']
sma = goog_data['Simple20DayMovingAverage']

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
sma.plot(ax=ax1, color='r', lw=2., legend=True)
plt.show()

Deciphering the Markets with Technical Analysis Chapter 2

[49]

In the preceding code, the following applies:

We have used the Python statistics package to compute the mean of the values in
history.
Finally, we used matplotlib to plot the SMA against the actual prices to observe
the behavior.

The following plot is an output of the code:

In this plot, it is easy to observe that the 20-day SMA has the intended smoothing effect and
evens out the micro-volatility in the actual stock price, yielding a more stable price curve.

Exponential moving average
The exponential moving average, which we will refer to as the EMA, is the single most
well-known and widely used technical analysis indicator for time series data.

Deciphering the Markets with Technical Analysis Chapter 2

[50]

The EMA is similar to the simple moving average, but, instead of weighing all prices in the
history equally, it places more weight on the most recent price observation and less weight
on the older price observations. This is endeavoring to capture the intuitive idea that the
new price observation has more up-to-date information than prices in the past. It is also
possible to place more weight on older price observations and less weight on the newer
price observations. This would try to capture the idea that longer-term trends have more
information than short-term volatile price movements.

The weighting depends on the selected time period of the EMA; the shorter the time period,
the more reactive the EMA is to new price observations; in other words, the EMA
converges to new price observations faster and forgets older observations faster, also
referred to as Fast EMA. The longer the time period, the less reactive the EMA is to new
price observations; that is, EMA converges to new price observations slower and forgets
older observations slower, also referred to as Slow EMA.

Based on the description of EMA, it is formulated as a weight factor, , applied to new price
observations and a weight factor applied to the current value of EMA to get the new value
of EMA. Since the sum of the weights should be 1 to keep the EMA units the same as price
units, that is, $s, the weight factor applied to EMA values turns out to be . Hence, we
get the following two formulations of new EMA values based on old EMA values and new
price observations, which are the same definitions, written in two different forms:

Alternatively, we have the following:

Here, the following applies:

: Current price of the instrument

: EMA value prior to the current price observation

: Smoothing constant, most commonly set to

: Number of time periods (similar to what we used in the simple moving average)

Deciphering the Markets with Technical Analysis Chapter 2

[51]

Implementation of the exponential moving average
Let's implement an exponential moving average with 20 days as the number of time
periods to compute the average over. We will use a default smoothing factor of 2 / (n + 1)
for this implementation. Similar to SMA, EMA also achieves an evening out across normal
daily prices. EMA has the advantage of allowing us to weigh recent prices with higher
weights than an SMA does, which does uniform weighting.

In the following code, we will see the implementation of the exponential moving average:

num_periods = 20 # number of days over which to average
K = 2 / (num_periods + 1) # smoothing constant
ema_p = 0
ema_values = [] # to hold computed EMA values

for close_price in close:
 if (ema_p == 0): # first observation, EMA = current-price
 ema_p = close_price
 else:
 ema_p = (close_price - ema_p) * K + ema_p

 ema_values.append(ema_p)

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data =
goog_data.assign(Exponential20DayMovingAverage=pd.Series(ema_values,
index=goog_data.index))
close_price = goog_data['ClosePrice']
ema = goog_data['Exponential20DayMovingAverage']

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
ema.plot(ax=ax1, color='b', lw=2., legend=True)
plt.savefig('ema.png')
plt.show()

Deciphering the Markets with Technical Analysis Chapter 2

[52]

In the preceding code, the following applies:

We used a list (ema_values) to track EMA values computed so far.
On each new observation of close price, we decay the difference from the
old EMA value and update the old EMA value slightly to find the
new EMA value.
Finally, the matplotlib plot shows the difference between EMA and non-EMA
prices.

Let's now have a look at the plot. This is the output of the code:

From the plot, it is observed that EMA has a very similar smoothing effect to SMA, as
expected, and it reduces the noise in the raw prices. However the extra parameter, ,
available in EMA in addition to the parameter , allows us to control the relative weight
placed on the new price observation, as compared to older price observations. This allows
us to build different variants of EMA by varying the parameter to make fast and slow
EMAs, even for the same parameter, . We will explore fast and slow EMAs more in the
rest of this chapter and in later chapters.

Deciphering the Markets with Technical Analysis Chapter 2

[53]

Absolute price oscillator
The absolute price oscillator, which we will refer to as APO, is a class of indicators that
builds on top of moving averages of prices to capture specific short-term deviations in
prices.

The absolute price oscillator is computed by finding the difference between a fast
exponential moving average and a slow exponential moving average. Intuitively, it is
trying to measure how far the more reactive EMA () is deviating from the more
stable EMA (). A large difference is usually interpreted as one of two things:
instrument prices are starting to trend or break out, or instrument prices are far away from
their equilibrium prices, in other words, overbought or oversold:

Implementation of the absolute price oscillator
Let's now implement the absolute price oscillator, with the faster EMA using a period of 10
days and a slower EMA using a period of 40 days, and default smoothing factors being 2/11
and 2/41, respectively, for the two EMAs:

num_periods_fast = 10 # time period for the fast EMA
K_fast = 2 / (num_periods_fast + 1) # smoothing factor for fast EMA
ema_fast = 0

num_periods_slow = 40 # time period for slow EMA
K_slow = 2 / (num_periods_slow + 1) # smoothing factor for slow EMA
ema_slow = 0

ema_fast_values = [] # we will hold fast EMA values for visualization
purposes
ema_slow_values = [] # we will hold slow EMA values for visualization
purposes
apo_values = [] # track computed absolute price oscillator values

for close_price in close:
 if (ema_fast == 0): # first observation
 ema_fast = close_price
 ema_slow = close_price
 else:
 ema_fast = (close_price - ema_fast) * K_fast + ema_fast
 ema_slow = (close_price - ema_slow) * K_slow + ema_slow

 ema_fast_values.append(ema_fast)

Deciphering the Markets with Technical Analysis Chapter 2

[54]

 ema_slow_values.append(ema_slow)
 apo_values.append(ema_fast - ema_slow)

The preceding code generates APO values that have higher positive and negative values
when the prices are moving away from long-term EMA very quickly (breaking out), which
can have a trend-starting interpretation or an overbought/sold interpretation. Now, let's
visualize the fast and slow EMAs and visualize the APO values generated:

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data =
goog_data.assign(FastExponential10DayMovingAverage=pd.Series(ema_fast_value
s, index=goog_data.index))
goog_data =
goog_data.assign(SlowExponential40DayMovingAverage=pd.Series(ema_slow_value
s, index=goog_data.index))
goog_data = goog_data.assign(AbsolutePriceOscillator=pd.Series(apo_values,
index=goog_data.index))
close_price = goog_data['ClosePrice']
ema_f = goog_data['FastExponential10DayMovingAverage']
ema_s = goog_data['SlowExponential40DayMovingAverage']
apo = goog_data['AbsolutePriceOscillator']

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(211, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
ema_f.plot(ax=ax1, color='b', lw=2., legend=True)
ema_s.plot(ax=ax1, color='r', lw=2., legend=True)
ax2 = fig.add_subplot(212, ylabel='APO')
apo.plot(ax=ax2, color='black', lw=2., legend=True)
plt.show()

Deciphering the Markets with Technical Analysis Chapter 2

[55]

The preceding code will return the following output. Let's have a look at the plot:

One observation here is the difference in behavior between fast and slow EMAs. The faster
one is more reactive to new price observations, and the slower one is less reactive to new
price observations and decays slower. The APO values are positive when prices are
breaking out to the upside, and the magnitude of the APO values captures the magnitude
of the breakout. The APO values are negative when prices are breaking out to the
downside, and the magnitude of the APO values captures the magnitude of the breakout.
In a later chapter in this book, we will use this signal in a realistic trading strategy.

Moving average convergence divergence
The moving average convergence divergence is another in the class of indicators that builds
on top of moving averages of prices. We'll refer to it as MACD. This goes a step further
than the APO. Let's look at it in greater detail.

Deciphering the Markets with Technical Analysis Chapter 2

[56]

The moving average convergence divergence was created by Gerald Appel. It is similar in
spirit to an absolute price oscillator in that it establishes the difference between a fast
exponential moving average and a slow exponential moving average. However, in the case
of MACD, we apply a smoothing exponential moving average to the MACD value itself in
order to get the final signal output from the MACD indicator. Optionally, you may also
look at the difference between MACD values and the EMA of the MACD values (signal)
and visualize it as a histogram. A properly configured MACD signal can successfully
capture the direction, magnitude, and duration of a trending instrument price:

Implementation of the moving average convergence
divergence
Let's implement a moving average convergence divergence signal with a fast EMA period
of 10 days, a slow EMA period of 40 days, and with default smoothing factors of 2/11
and 2/41, respectively:

num_periods_fast = 10 # fast EMA time period
K_fast = 2 / (num_periods_fast + 1) # fast EMA smoothing factor
ema_fast = 0

num_periods_slow = 40 # slow EMA time period
K_slow = 2 / (num_periods_slow + 1) # slow EMA smoothing factor
ema_slow = 0

num_periods_macd = 20 # MACD EMA time period
K_macd = 2 / (num_periods_macd + 1) # MACD EMA smoothing factor
ema_macd = 0

ema_fast_values = [] # track fast EMA values for visualization purposes
ema_slow_values = [] # track slow EMA values for visualization purposes
macd_values = [] # track MACD values for visualization purposes
macd_signal_values = [] # MACD EMA values tracker

macd_histogram_values = [] # MACD - MACD-EMA

for close_price in close:
 if (ema_fast == 0): # first observation

Deciphering the Markets with Technical Analysis Chapter 2

[57]

 ema_fast = close_price
 ema_slow = close_price
 else:
 ema_fast = (close_price - ema_fast) * K_fast + ema_fast
 ema_slow = (close_price - ema_slow) * K_slow + ema_slow

 ema_fast_values.append(ema_fast)
 ema_slow_values.append(ema_slow)
 macd = ema_fast - ema_slow # MACD is fast_MA - slow_EMA

 if ema_macd == 0:
 ema_macd = macd
 else:
 ema_macd = (macd - ema_macd) * K_slow + ema_macd # signal is EMA of MACD
values

 macd_values.append(macd)
 macd_signal_values.append(ema_macd)
 macd_histogram_values.append(macd - ema_macd)

In the preceding code, the following applies:

 The time period used a period of 20 days and a default smoothing factor
of 2/21.
We also computed a value (-).

Let's look at the code to plot and visualize the different signals and see what we can
understand from it:

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data =
goog_data.assign(FastExponential10DayMovingAverage=pd.Series(ema_fast_value
s, index=goog_data.index))
goog_data =
goog_data.assign(SlowExponential40DayMovingAverage=pd.Series(ema_slow_value
s, index=goog_data.index))
goog_data =
goog_data.assign(MovingAverageConvergenceDivergence=pd.Series(macd_values,
index=goog_data.index))
goog_data =
goog_data.assign(Exponential20DayMovingAverageOfMACD=pd.Series(macd_signal_
values, index=goog_data.index))
goog_data =
goog_data.assign(MACDHistorgram=pd.Series(macd_historgram_values,
index=goog_data.index))
close_price = goog_data['ClosePrice']

Deciphering the Markets with Technical Analysis Chapter 2

[58]

ema_f = goog_data['FastExponential10DayMovingAverage']
ema_s = goog_data['SlowExponential40DayMovingAverage']
macd = goog_data['MovingAverageConvergenceDivergence']
ema_macd = goog_data['Exponential20DayMovingAverageOfMACD']
macd_histogram = goog_data['MACDHistorgram']

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(311, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
ema_f.plot(ax=ax1, color='b', lw=2., legend=True)
ema_s.plot(ax=ax1, color='r', lw=2., legend=True)
ax2 = fig.add_subplot(312, ylabel='MACD')
macd.plot(ax=ax2, color='black', lw=2., legend=True)
ema_macd.plot(ax=ax2, color='g', lw=2., legend=True)s
ax3 = fig.add_subplot(313, ylabel='MACD')
macd_histogram.plot(ax=ax3, color='r', kind='bar', legend=True,
use_index=False)
plt.show()

The preceding code will return the following output. Let's have a look at the plot:

Deciphering the Markets with Technical Analysis Chapter 2

[59]

The MACD signal is very similar to the APO, as we expected, but now, in addition, the
 is an additional smoothing factor on top of raw values to capture lasting

trending periods by smoothing out the noise of raw values. Finally, the ,
which is the difference in the two series, captures (a) the time period when the trend is
starting or reversion, and (b) the magnitude of lasting trends when values
stay positive or negative after reversing signs.

Bollinger bands
Bollinger bands (BBANDS) also builds on top of moving averages, but incorporates recent
price volatility that makes the indicator more adaptive to different market conditions. Let's
now discuss this in greater detail.

Bollinger bands is a well-known technical analysis indicator developed by John Bollinger. It
computes a moving average of the prices (you can use the simple moving average or the
exponential moving average or any other variant). In addition, it computes the standard
deviation of the prices in the lookback period by treating the moving average as the mean
price. It then creates an upper band that is a moving average, plus some multiple of
standard price deviations, and a lower band that is a moving average minus multiple
standard price deviations. This band represents the expected volatility of the prices by
treating the moving average of the price as the reference price. Now, when prices move
outside of these bands, that can be interpreted as a breakout/trend signal or an
overbought/sold mean reversion signal.

Let's look at the equations to compute the upper Bollinger band, , and the lower
Bollinger band, . Both depend, in the first instance, on the middle Bollinger band,

, which is simply the simple moving average of the previous time periods(in
this case, the last days) denoted by . The upper and lower bands are then
computed by adding/subtracting to , which is the product of standard
deviation, , which we've seen before, and , which is a standard deviation factor of our
choice. The larger the value of chosen, the greater the Bollinger bandwidth for our signal,
so it is just a parameter that controls the width in our trading signal:

Deciphering the Markets with Technical Analysis Chapter 2

[60]

Here, the following applies:

: Standard deviation factor of our choice

To compute the standard deviation, first we compute the variance:

Then, the standard deviation is simply the square root of the variance:

Implementation of Bollinger bands
We will implement and visualize Bollinger bands, with 20 days as the time period for
():

import statistics as stats
import math as math

time_period = 20 # history length for Simple Moving Average for middle band
stdev_factor = 2 # Standard Deviation Scaling factor for the upper and
lower bands

history = [] # price history for computing simple moving average
sma_values = [] # moving average of prices for visualization purposes
upper_band = [] # upper band values
lower_band = [] # lower band values

for close_price in close:
 history.append(close_price)
 if len(history) > time_period: # we only want to maintain at most
'time_period' number of price observations
 del (history[0])

 sma = stats.mean(history)
 sma_values.append(sma) # simple moving average or middle band

 variance = 0 # variance is the square of standard deviation

 for hist_price in history:
 variance = variance + ((hist_price - sma) ** 2)

 stdev = math.sqrt(variance / len(history)) # use square root to get

Deciphering the Markets with Technical Analysis Chapter 2

[61]

standard deviation
 upper_band.append(sma + stdev_factor * stdev)
 lower_band.append(sma - stdev_factor * stdev)

In the preceding code, we used a stdev factor, , of 2 to compute the upper band and
lower band from the middle band, and the standard deviation we compute.

Now, let's add some code to visualize the Bollinger bands and make some observations:

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data =
goog_data.assign(MiddleBollingerBand20DaySMA=pd.Series(sma_values,
index=goog_data.index))
goog_data =
goog_data.assign(UpperBollingerBand20DaySMA2StdevFactor=pd.Series(upper_ban
d, index=goog_data.index))
goog_data =
goog_data.assign(LowerBollingerBand20DaySMA2StdevFactor=pd.Series(lower_ban
d, index=goog_data.index))
close_price = goog_data['ClosePrice']
mband = goog_data['MiddleBollingerBand20DaySMA']
uband = goog_data['UpperBollingerBand20DaySMA2StdevFactor']
lband = goog_data['LowerBollingerBand20DaySMA2StdevFactor']

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(111, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
mband.plot(ax=ax1, color='b', lw=2., legend=True)
uband.plot(ax=ax1, color='g', lw=2., legend=True)
lband.plot(ax=ax1, color='r', lw=2., legend=True)
plt.show()

Deciphering the Markets with Technical Analysis Chapter 2

[62]

The preceding code will return the following output. Let's have a look at the plot:

For Bollinger bands, when prices stay within the upper and lower bounds, then not much
can be said, but, when prices traverse the upper band, then one interpretation can be that
prices are breaking out to the upside and will continue to do so. Another interpretation of
the same event can be that the trading instrument is overbought and we should expect a
bounce back down.

The other case is when prices traverse the lower band, then one interpretation can be that
prices are breaking out to the downside and will continue to do so. Another interpretation
of the same event can be that the trading instrument is oversold and we should expect a
bounce back up. In either case, Bollinger bands helps us to quantify and capture the exact
time when this happens.

Relative strength indicator
The relative strength indicator, which we will refer to as RSI, is quite different from the
previous indicators we saw that were based on moving averages of prices. This is based on
price changes over periods to capture the strength/magnitude of price moves.

Deciphering the Markets with Technical Analysis Chapter 2

[63]

The relative strength indicator was developed by J Welles Wilder. It comprises a lookback
period, which it uses to compute the magnitude of the average of gains/price increases over
that period, as well as the magnitude of the averages of losses/price decreases over that
period. Then, it computes the RSI value that normalizes the signal value to stay between 0
and 100, and attempts to capture if there have been many more gains relative to the losses,
or if there have been many more losses relative to the gains. RSI values over 50% indicate
an uptrend, while RSI values below 50% indicate a downtrend.

For the last n periods, the following applies:

Otherwise, the following applies:

Otherwise, the following applies:

Implementation of the relative strength indicator
Now, let's implement and plot a relative strength indicator on our dataset:

import statistics as stats

time_period = 20 # look back period to compute gains & losses

gain_history = [] # history of gains over look back period (0 if no gain,
magnitude of gain if gain)
loss_history = [] # history of losses over look back period (0 if no loss,
magnitude of loss if loss)

Deciphering the Markets with Technical Analysis Chapter 2

[64]

avg_gain_values = [] # track avg gains for visualization purposes
avg_loss_values = [] # track avg losses for visualization purposes

rsi_values = [] # track computed RSI values

last_price = 0 # current_price - last_price > 0 => gain. current_price -
last_price < 0 => loss.

for close_price in close:
 if last_price == 0:
 last_price = close_price

 gain_history.append(max(0, close_price - last_price))
 loss_history.append(max(0, last_price - close_price))
 last_price = close_price

 if len(gain_history) > time_period: # maximum observations is equal to
lookback period
 del (gain_history[0])
 del (loss_history[0])

 avg_gain = stats.mean(gain_history) # average gain over lookback period
 avg_loss = stats.mean(loss_history) # average loss over lookback period
 avg_gain_values.append(avg_gain)
 avg_loss_values.append(avg_loss)

 rs = 0
 if avg_loss > 0: # to avoid division by 0, which is undefined
 rs = avg_gain / avg_loss
 rsi = 100 - (100 / (1 + rs))
 rsi_values.append(rsi)

In the preceding code, the following applies:

We have used 20 days as our time period over which we computed the average
gains and losses and then normalized it to be between 0 and 100 based on our
formula for values.
For our dataset where prices have been steadily rising, it is obvious that the
values are consistently over 50% or more.

Now, let's look at the code to visualize the final signal as well as the components involved:

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data =
goog_data.assign(RelativeStrengthAvgGainOver20Days=pd.Series(avg_gain_value
s, index=goog_data.index))

Deciphering the Markets with Technical Analysis Chapter 2

[65]

goog_data =
goog_data.assign(RelativeStrengthAvgLossOver20Days=pd.Series(avg_loss_value
s, index=goog_data.index))
goog_data =
goog_data.assign(RelativeStrengthIndicatorOver20Days=pd.Series(rsi_values,
index=goog_data.index))
close_price = goog_data['ClosePrice']
rs_gain = goog_data['RelativeStrengthAvgGainOver20Days']
rs_loss = goog_data['RelativeStrengthAvgLossOver20Days']
rsi = goog_data['RelativeStrengthIndicatorOver20Days']

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(311, ylabel='Google price in $')
close_price.plot(ax=ax1, color='black', lw=2., legend=True)
ax2 = fig.add_subplot(312, ylabel='RS')
rs_gain.plot(ax=ax2, color='g', lw=2., legend=True)
rs_loss.plot(ax=ax2, color='r', lw=2., legend=True)
ax3 = fig.add_subplot(313, ylabel='RSI')
rsi.plot(ax=ax3, color='b', lw=2., legend=True)
plt.show()

The preceding code will return the following output. Let's have a look at the plot:

Deciphering the Markets with Technical Analysis Chapter 2

[66]

The first observation we can make from our analysis of the RSI signal applied to our
GOOGLE dataset is that the AverageGain over our time frame of 20 days more often than
not exceeds the AverageLoss over the same time frame, which intuitively makes sense
because Google has been a very successful stock, increasing in value more or less
consistently. Based on that, the RSI indicator also stays above 50% for the majority of the
lifetime of the stock, again reflecting the continued gains in the Google stock over the
course of its lifetime.

Standard deviation
Standard deviation, which will be referred to as STDEV, is a basic measure of price
volatility that is used in combination with a lot of other technical analysis indicators to
improve them. We'll explore that in greater detail in this section.

Standard deviation is a standard measure that is computed by measuring the squared
deviation of individual prices from the mean price, and then finding the average of all those
squared deviation values. This value is known as variance, and the standard deviation is
obtained by taking the square root of the variance. Larger STDEVs are a mark of more
volatile markets or larger expected price moves, so trading strategies need to factor that
increased volatility into risk estimates and other trading behavior.

To compute standard deviation, first we compute the variance:

Then, standard deviation is simply the square root of the variance:

: Simple moving average over n time periods.

Implementing standard derivatives
Let's have a look at the following code, which demonstrates the implementation of
standard derivatives.

Deciphering the Markets with Technical Analysis Chapter 2

[67]

We are going to import the statistics and the math library we need to perform basic
mathematical operations. We are defining the loopback period with the variable
time_period, and we will store the past prices in the list history, while we will store the
SMA and the standard deviation in sma_values and stddev_values. In the code, we
calculate the variance, and then we calculate the standard deviation. To finish, we append
to the goog_data data frame that we will use to display the chart:

import statistics as stats
import math as math

time_period = 20 # look back period

history = [] # history of prices
sma_values = [] # to track moving average values for visualization purposes
stddev_values = [] # history of computed stdev values
for close_price in close:
 history.append(close_price)
 if len(history) > time_period: # we track at most 'time_period' number of
prices
 del (history[0])

 sma = stats.mean(history)
 sma_values.append(sma)

 variance = 0 # variance is square of standard deviation
 for hist_price in history:
 variance = variance + ((hist_price - sma) ** 2)

 stdev = math.sqrt(variance / len(history))
 stddev_values.append(stdev)

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data =
goog_data.assign(StandardDeviationOver20Days=pd.Series(stddev_values,
index=goog_data.index))
close_price = goog_data['ClosePrice']
stddev = goog_data['StandardDeviationOver20Days']

Deciphering the Markets with Technical Analysis Chapter 2

[68]

The preceding code will build the final visualizations:

import matplotlib.pyplot as plt

fig = plt.figure()
ax1 = fig.add_subplot(211, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
ax2 = fig.add_subplot(212, ylabel='Stddev in $')
stddev.plot(ax=ax2, color='b', lw=2., legend=True)
plt.show()

The preceding code will return the following output. Let's have a look at the plot:

Here, the standard deviation quantifies the volatility in the price moves during the last 20
days. Volatility spikes when the Google stock prices spike up or spike down or go through
large changes over the last 20 days. We will revisit the standard deviation as an important
volatility measure in later chapters.

Momentum
Momentum, also referred to as MOM, is an important measure of speed and magnitude of
price moves. This is often a key indicator of trend/breakout-based trading algorithms.

Deciphering the Markets with Technical Analysis Chapter 2

[69]

In its simplest form, momentum is simply the difference between the current price and
price of some fixed time periods in the past. Consecutive periods of positive momentum
values indicate an uptrend; conversely, if momentum is consecutively negative, that
indicates a downtrend. Often, we use simple/exponential moving averages of the MOM
indicator, as shown here, to detect sustained trends:

Here, the following applies:

: Price at time t
: Price n time periods before time t

Implementation of momentum
Now, let's have a look at the code that demonstrates the implementation of momentum:

time_period = 20 # how far to look back to find reference price to compute
momentum

history = [] # history of observed prices to use in momentum calculation
mom_values = [] # track momentum values for visualization purposes

for close_price in close:
 history.append(close_price)
 if len(history) > time_period: # history is at most 'time_period' number
of observations
 del (history[0])

 mom = close_price - history[0]
 mom_values.append(mom)

This maintains a list history of past prices and, at each new observation, computes the
momentum to be the difference between the current price and the price time_period days
ago, which, in this case, is 20 days:

goog_data = goog_data.assign(ClosePrice=pd.Series(close,
index=goog_data.index))
goog_data =
goog_data.assign(MomentumFromPrice20DaysAgo=pd.Series(mom_values,
index=goog_data.index))
close_price = goog_data['ClosePrice']
mom = goog_data['MomentumFromPrice20DaysAgo']

import matplotlib.pyplot as plt

Deciphering the Markets with Technical Analysis Chapter 2

[70]

fig = plt.figure()
ax1 = fig.add_subplot(211, ylabel='Google price in $')
close_price.plot(ax=ax1, color='g', lw=2., legend=True)
ax2 = fig.add_subplot(212, ylabel='Momentum in $')
mom.plot(ax=ax2, color='b', lw=2., legend=True)
plt.show()

The preceding code will return the following output. Let's have a look at the plot:

The plot for momentum shows us the following:

Momentum values peak when the stock price changes by a large amount as
compared to the price 20 days ago.
Here, most momentum values are positive, mainly because, as we discussed in
the previous section, Google stock has been increasing in value over the course of
its lifetime and has large upward momentum values from time to time.
During the brief periods where the stock prices drop in value, we can observe
negative momentum values.

In this section, we learned how to create trading signals based on technical analysis. In the
next section, we will learn how to implement advanced concepts, such as seasonality, in
trading instruments.

Deciphering the Markets with Technical Analysis Chapter 2

[71]

Implementing advanced concepts, such as
seasonality, in trading instruments
In trading, the price we receive is a collection of data points at constant time intervals called
time series. They are time dependent and can have increasing or decreasing trends and
seasonality trends, in other words, variations specific to a particular time frame. Like any
other retail products, financial products follow trends and seasonality during different
seasons. There are multiple seasonality effects: weekend, monthly, and holidays.

In this section, we will use the GOOG data from 2001 to 2018 to study price variations
based on the months.

We will write the code to regroup the data by months, calculate and return the1.
monthly returns, and then compare these returns in a histogram. We will observe
that GOOG has a higher return in October:

import pandas as pd
import matplotlib.pyplot as plt
from pandas_datareader import data

start_date = '2001-01-01'
end_date = '2018-01-01'
SRC_DATA_FILENAME='goog_data_large.pkl'

try:
 goog_data = pd.read_pickle(SRC_DATA_FILENAME)
 print('File data found...reading GOOG data')
except FileNotFoundError:
 print('File not found...downloading the GOOG data')
 goog_data = data.DataReader('GOOG', 'yahoo', start_date,
end_date)
 goog_data.to_pickle(SRC_DATA_FILENAME)

goog_monthly_return = goog_data['Adj Close'].pct_change().groupby(
 [goog_data['Adj Close'].index.year,
 goog_data['Adj Close'].index.month]).mean()
goog_montly_return_list=[]

for i in range(len(goog_monthly_return)):
 goog_montly_return_list.append\
 ({'month':goog_monthly_return.index[i][1],
 'monthly_return': goog_monthly_return[i]})

goog_montly_return_list=pd.DataFrame(goog_montly_return_list,
columns=('month','monthly_return'))

Deciphering the Markets with Technical Analysis Chapter 2

[72]

goog_montly_return_list.boxplot(column='monthly_return',
by='month')

ax = plt.gca()
labels = [item.get_text() for item in ax.get_xticklabels()]
labels=['Jan','Feb','Mar','Apr','May','Jun',\
 'Jul','Aug','Sep','Oct','Nov','Dec']
ax.set_xticklabels(labels)
ax.set_ylabel('GOOG return')
plt.tick_params(axis='both', which='major', labelsize=7)
plt.title("GOOG Monthly return 2001-2018")
plt.suptitle("")
plt.show()

The preceding code will return the following output. The following screenshot
represents the GOOG monthly return:

Deciphering the Markets with Technical Analysis Chapter 2

[73]

In this screenshot, we observe that there are repetitive patterns. The month of
October is the month when the return seems to be the highest, unlike November,
where we observe a drop in the return.

Since it is a time series, we will study the stationary (mean, variance remain2.
constant over time). In the following code, we will check this property because
the following time series models work on the assumption that time series are
stationary:

Constant mean
Constant variance
Time-independent autocovariance

Displaying rolling statistics
def plot_rolling_statistics_ts(ts, titletext,ytext,
window_size=12):
 ts.plot(color='red', label='Original', lw=0.5)
 ts.rolling(window_size).mean().plot(
 color='blue',label='Rolling Mean')
 ts.rolling(window_size).std().plot(
 color='black', label='Rolling Std')

 plt.legend(loc='best')
 plt.ylabel(ytext)
 plt.title(titletext)
 plt.show(block=False)

plot_rolling_statistics_ts(goog_monthly_return[1:],'GOOG prices
rolling mean and standard deviation','Monthly return')

plot_rolling_statistics_ts(goog_data['Adj Close'],'GOOG prices
rolling mean and standard deviation','Daily prices',365)

The preceding code will return the following two charts, where we will compare
the difference using two different time series.

One shows the GOOG daily prices, and the other one shows the GOOG
monthly return.
We observe that the rolling average and rolling variance are not constant
when using the daily prices instead of using the daily return.
This means that the first time series representing the daily prices is not
stationary. Therefore, we will need to make this time series stationary.
The non-stationary for a time series can generally be attributed to two
factors: trend and seasonality.

Deciphering the Markets with Technical Analysis Chapter 2

[74]

The following plot shows GOOG daily prices:

When observing the plot of the GOOG daily prices, the following can be stated:

We can see that the price is growing over time; this is a trend.
The wave effect we are observing on the GOOG daily prices comes from
seasonality.
When we make a time series stationary, we remove the trend and
seasonality by modeling and removing them from the initial data.
Once we find a model predicting future values for the data without
seasonality and trend, we can apply back the seasonality and trend values to
get the actual forecasted data.

Deciphering the Markets with Technical Analysis Chapter 2

[75]

The following plot shows the GOOG monthly return:

For the data using the GOOG daily prices, we can just remove the trend by
subtracting the moving average from the daily prices in order to obtain the
following screenshot:

We can now observe the trend disappeared.
Additionally, we also want to remove seasonality; for that, we can apply
differentiation.

Deciphering the Markets with Technical Analysis Chapter 2

[76]

For the differentiation, we will calculate the difference between two
consecutive days; we will then use the difference as data points.

We recommend that you read a book on time series to go deeper in an
analysis of the same: Practical Time Series Analysis: Master Time Series Data
Processing, Visualization, and Modeling Using Python, Packt edition.

To confirm our observation, in the code, we use the popular statistical test: the3.
augmented Dickey-Fuller test:

This determines the presence of a unit root in time series.
If a unit root is present, the time series is not stationary.
The null hypothesis of this test is that the series has a unit root.
If we reject the null hypothesis, this means that we don't find a unit root.

Deciphering the Markets with Technical Analysis Chapter 2

[77]

If we fail to reject the null hypothesis, we can say that the time series is non-
stationary:

def test_stationarity(timeseries):
 print('Results of Dickey-Fuller Test:')
 dftest = adfuller(timeseries[1:], autolag='AIC')
 dfoutput = pd.Series(dftest[0:4], index=['Test Statistic', 'p-
value', '#Lags Used', 'Number of Observations Used'])
 print (dfoutput)

test_stationarity(goog_data['Adj Close'])

This test returns a p-value of 0.99. Therefore, the time series is not stationary.4.
Let's have a look at the test:

test_stationarity(goog_monthly_return[1:])

This test returns a p-value of less than 0.05. Therefore, we cannot say that the
time series is not stationary. We recommend using daily returns when studying
financial products. In the example of stationary, we could observe that no
transformation is needed.

The last step of the time series analysis is to forecast the time series. We have two5.
possible scenarios:

A strictly stationary series without dependencies among values. We can use
a regular linear regression to forecast values.
A series with dependencies among values. We will be forced to use other
statistical models. In this chapter, we chose to focus on using the Auto-
Regression Integrated Moving Averages (ARIMA) model. This model has
three parameters:

Autoregressive (AR) term (p)—lags of dependent variables.
Example for 3, the predictors for x(t) is x(t-1) + x(t-2) + x(t-3).
Moving average (MA) term (q)—lags for errors in prediction.
Example for 3, the predictor for x(t) is e(t-1) + e(t-2) + e(t-3),
where e(i) is the difference between the moving average value
and the actual value.
Differentiation (d)— This is the d number of occasions where
we apply differentiation between values, as was explained
when we studied the GOOG daily price. If d=1, we proceed
with the difference between two consecutive values.

Deciphering the Markets with Technical Analysis Chapter 2

[78]

The parameter values for AR(p) and MA(q) can be respectively found by using
the autocorrelation function (ACF) and the partial autocorrelation function
(PACF):

from statsmodels.graphics.tsaplots import plot_acf
from statsmodels.graphics.tsaplots import plot_pacf
from matplotlib import pyplot

pyplot.figure()
pyplot.subplot(211)
plot_acf(goog_monthly_return[1:], ax=pyplot.gca(),lags=10)

pyplot.subplot(212)
plot_pacf(goog_monthly_return[1:], ax=pyplot.gca(),lags=10)

pyplot.show()

Now, let's have a look at the output of the code:

When we observe the two preceding diagrams, we can draw the confidence
interval on either side of 0. We will use this confidence interval to determine the
parameter values for the AR(p) and MA(q).

q: The lag value is q=1 when the ACF plot crosses the upper confidence
interval for the first time.
p: The lag value is p=1 when the PACF chart crosses the upper confidence
interval for the first time.

Deciphering the Markets with Technical Analysis Chapter 2

[79]

These two graphs suggest using q=1 and p=1. We will apply the ARIMA model in6.
the following code:

from statsmodels.tsa.arima_model import ARIMA

model = ARIMA(goog_monthly_return[1:], order=(2, 0, 2))

fitted_results = model.fit()

goog_monthly_return[1:].plot()

fitted_results.fittedvalues.plot(color='red')

plt.show()

As shown in the code, we applied the ARIMA model to the time series and it is
representing the monthly return.

Summary
In this chapter, we explored concepts of generating trading signals, such as support and
resistance, based on the intuitive ideas of supply and demand that are fundamental forces
that drive market prices. We also briefly explored how you might use support and
resistance to implement a simple trading strategy. Then, we looked into a variety of
technical analysis indicators, explained the intuition behind them, and implemented and
visualized their behavior during different price movements. We also introduced and
implemented the ideas behind advanced mathematical approaches, such as Autoregressive
(AR), Moving Average (MA), Differentiation (D), AutoCorrelation Function (ACF),
and Partial Autocorrelation Function (PACF) for dealing with non-stationary time series
datasets. Finally, we briefly introduced an advanced concept such as seasonality, which
explains how there are repeating patterns in financial datasets, basic time series analysis
and concepts of stationary or non-stationary time series, and how you may model financial
data that displays that behavior.

In the next chapter, we will review and implement some simple regression and
classification methods and understand the advantages of applying supervised statistical
learning methods to trading.

3
Predicting the Markets with

Basic Machine Learning
In the last chapter, we learned how to design trading strategies, create trading signals, and
implement advanced concepts, such as seasonality in trading instruments. Understanding
those concepts in greater detail is a vast field comprising stochastic processes, random
walks, martingales, and time series analysis, which we leave to you to explore at your own
pace.

So what's next? Let's look at an even more advanced method of prediction and forecasting:
statistical inference and prediction. This is known as machine learning, the fundamentals of
which were developed in the 1800s and early 1900s and have been worked on ever
since. Recently, there has been a resurgence in interest in machine learning algorithms and
applications owing to the availability of extremely cost-effective processing power and the
easy availability of large datasets. Understanding machine learning techniques in great
detail is a massive field at the intersection of linear algebra, multivariate calculus,
probability theory, frequentist and Bayesian statistics, and an in-depth analysis of machine
learning is beyond the scope of a single book. Machine learning methods, however, are
surprisingly easily accessible in Python and quite intuitive to understand, so we will
explain the intuition behind the methods and see how they find applications in algorithmic
trading. But first, let's introduce some basic concepts and notation that we will need for the
rest of this chapter.

This chapter will cover the following topics:

Understanding the terminology and notations
Creating predictive models that predict price movement using linear regression
methods
Creating predictive models that predict buy and sell signals using linear
classification methods

Predicting the Markets with Basic Machine Learning Chapter 3

[81]

Understanding the terminology and
notations
To develop ideas quickly and build an intuition regarding supply and demand, we have a
simple and completely hypothetical dataset of height, weight, and race of a few random
samples obtained from a survey. Let's have a look at the dataset:

Height (inches) Weight (lbs) Race (Asian/African/Caucasian)
72 180 Asian
66 150 Asian
70 190 African
75 210 Caucasian
64 150 Asian
77 220 African
70 200 Caucasian
65 150 African

Let's examine the individual fields:

Height in inches and weight in lbs are continuous data types because they can
take on any values, such as 65, 65.123, and 65.3456667.
Race, on the other hand, would be an example of a categorical data type, because
there are a finite number of possible values that can go in the field. In this
example, we assume that possible race values are Asian, African, and Caucasian.

Now, given this dataset, say our task is to build a mathematical model that can learn from
the data we provide it with. The task or objective we are trying to learn in this example is to
find the relationship between the weight of a person as it relates to their height and race.
Intuitively, it should be obvious that height will have a major role to play (taller people are
much more likely to be heavier), and race should have very little impact. Race may have
some impact on the height of an individual, but once the height is known, knowing their
race also provides very little additional information in guessing/predicting a person's
weight. In this particular problem, note that in the dataset, we are also provided the weight
of the samples in addition to their height and race.

Predicting the Markets with Basic Machine Learning Chapter 3

[82]

Since the variable we are trying to learn how to predict is known, this is known as a
supervised learning problem. If, on the other hand, we were not provided with the weight
variable and were asked to predict whether, based on height and race, someone is more
likely to be heavier than someone else, that would be an unsupervised learning problem.
For the scope of this chapter, we will focus on supervised learning problems only, since that
is the most typical use case of machine learning in algorithmic trading.

Another thing to address in this example is the fact that, in this case, we are trying to
predict weight as a function of height and race. So we are trying to predict a
continuous variable. This is known as a regression problem, since the output of such a
model is a continuous value. If, on the other hand, say our task was to predict the race of a
person as a function of their height and weight, in that case, we would be trying to predict a
categorical variable type. This is known as a classification problem, since the output of such
a model will be one value from a set of finite discrete values.

When we start addressing this problem, we will begin with a dataset that is already
available to us and will train our model of choice on this dataset. This process (as you've
already guessed) is known as training your model. We will use the data provided to us to
guess the parameters of the learning model of our choice (we will elaborate more on what
this means later). This is known as statistical inference of these parametric learning models.
There are also non-parametric learning models, where we try to remember the data we've
seen so far to make a guess as regards new data.

Once we are done training our model, we will use it to predict weight for datasets we
haven't seen yet. Obviously, this is the part we are interested in. Based on data in the future
that we haven't seen yet, can we predict the weight? This is known as testing your model
and the datasets used for that are known as test data. The task of using a model where the
parameters were learned by statistical inference to actually make predictions on previously
unseen data is known as statistical prediction or forecasting.

We need to be able to understand the metrics of how to differentiate between a good model
and a bad model. There are several well known and well understood performance metrics
for different models. For regression prediction problems, we should try to minimize the
differences between predicted value and the actual value of the target variable. This error
term is known as residual errors; larger errors mean worse models and, in regression, we
try to minimize the sum of these residual errors, or the sum of the square of these residual
errors (squaring has the effect of penalizing large outliers more strongly, but more on that
later). The most common metric for regression problems is R^2, which tracks the ratio of
explained variance vis-à-vis unexplained variance, but we save that for more advanced
texts.

Predicting the Markets with Basic Machine Learning Chapter 3

[83]

In the simple hypothetical prediction problem of guessing weight based on height and race,
let's say the model predicts the weight to be 170 and the actual weight is 160. In this case,
the error is 160-170 = -10, the absolute error is |-10| = 10, and the squared error is (-10)^2 =
100. In classification problems, we want to make sure our predictions are the same discrete
value as the actual value. When we predict a label that is different from the actual label,
that is a misclassification or error. Obviously, the higher the number of accurate
predictions, the better the model, but it gets more complicated than that. There are metrics
such as a confusion matrix, a receiver operating characteristic, and the area under the curve,
but we save those for more advanced texts. Let's say, in the modified hypothetical problem
of guessing race based on height and weight, that we guess the race to be Caucasian while
the correct race is African. That is then considered an error, and we can aggregate all such
errors to find the aggregate errors across all predictions, but we will talk more on this in the
later parts of the book.

So far, we have been speaking in terms of a hypothetical example, but let's tie the terms
we've encountered so far into how it applies to financial datasets. As we mentioned,
supervised learning methods are most common here because, in historical financial data,
we are able to measure the price movements from the data. If we are simply trying to
predict that, if a price moves up or down from the current price, then that is a classification
problem with two prediction labels – Price goes up and Price goes down. There can also be
three prediction labels since Price goes up, Price goes down, and Price remains the same. If,
however, we want to predict the magnitude and direction of price moves, then this is a
regression problem where an example of the output could be Price moves +10.2 dollars,
meaning the prediction is that the price will move up by $10.2. The training dataset is
generated from historical data, and this can be historical data that was not used in training
the model and the live market data during live trading. We measure the accuracy of such
models with the metrics we listed above in addition to the PnL generated from the trading
strategies. With this introduction complete, let's now look into these methods in greater
detail, starting with regression methods.

Predicting the Markets with Basic Machine Learning Chapter 3

[84]

Exploring our financial dataset
Before we start applying machine learning techniques to build predictive models, we need
to perform some exploratory data wrangling on our dataset with the help of the steps listed
here. This is often a large and an underestimated prerequisite when it comes to applying
advanced methods to financial datasets.

Getting the data: We'll continue to use Google stock data that we've used in our1.
previous chapter:

import pandas as pd
from pandas_datareader import data

def load_financial_data(start_date, end_date, output_file):
 try:
 df = pd.read_pickle(output_file)
 print('File data found...reading GOOG data')
 except FileNotFoundError:
 print('File not found...downloading the GOOG data')
 df = data.DataReader('GOOG', 'yahoo', start_date, end_date)
 df.to_pickle(output_file)

 return df

In the code, we revisited how to download the data and implement a
method, load_financial_data, which we can use moving forward. It can also
be invoked, as shown in the following code, to download 17 years' of daily
Google data:

goog_data = load_financial_data(start_date='2001-01-01',
end_date='2018-01-01', output_file='goog_data_large.pkl')

The code will download financial data over a period of 17 years from GOOG
stock data. Now, let's move on to the next step.

Creating objectives/trading conditions that we want to predict: Now that we2.
know how to download our data, we need to operate on it to extract our target
for the predictive models, also known as a response or dependent variable;
effectively, what we are trying predict.

Predicting the Markets with Basic Machine Learning Chapter 3

[85]

In our hypothetical example of predicting weight, weight was our response
variable. For algorithmic trading, the common target is to be able to predict what
the future price will be so that we can take positions in the market right now that
will yield a profit in the future. If we model the response variable as future price-
current price, then we are trying to predict the direction of the future price with
regard to the current price (does it go up, does it go down, or does it remain the
same), as well as the magnitude of the price change. So, these variables look like
+10, +3.4, -4, and so on. This is the response variable methodology that we will use
for regression models, but we will look at it in greater detail later. Another variant
of the response variable would be to simply predict the direction but ignore the
magnitude, in other words, +1 to signify the future price moving up, -1 to signify
the future price moving down, and 0 to signify that the future price remains the
same as the current price. That is the response variable methodology that we will
use for classification models, but we will explore that later. Let's implement the
following code to generate these response variables:

def create_classification_trading_condition(df):
 df['Open-Close'] = df.Open - df.Close
 df['High-Low'] = df.High - df.Low
 df = df.dropna()
 X = df[['Open-Close', 'High-Low']]
 Y = np.where(df['Close'].shift(-1) > df['Close'], 1, -1)

 return (X, Y)

In this code, the following applies:

The classification response variable is +1 if the close price tomorrow is
higher than the close price today, and -1 if the close price tomorrow is lower
than the close price today.
For this example, we assume that the close price tomorrow is not the same
as the close price today, which we can choose to handle by creating a third
categorical value, 0.

The regression response variable is Close price tomorrow-Close price today for each
day. Let's have a look at the code:

def create_regression_trading_condition(df):
 df['Open-Close'] = df.Open - df.Close
 df['High-Low'] = df.High - df.Low
 df = df.dropna()
 X = df[['Open-Close', 'High-Low']]
 Y = df['Close'].shift(-1) - df['Close']

 return (X, Y)

Predicting the Markets with Basic Machine Learning Chapter 3

[86]

In this code, the following applies:

It is a positive value if the price goes up tomorrow, a negative value if the
price goes down tomorrow, and zero if the price does not change.
The sign of the value indicates the direction, and the magnitude of the
response variable captures the magnitude of the price move.

Partitioning datasets into training and testing datasets: One of the key3.
questions regarding a trading strategy is how it will perform on market
conditions or datasets that the trading strategy has not seen. Trading
performance on datasets that have not been used in training the predictive model
is often referred to as out-sample performance for that trading strategy. These
results are considered representative of what to expect when the trading strategy
is run in live markets. Generally, we divide all of our available datasets into
multiple partitions, and then we evaluate models trained on one dataset over a
dataset that wasn't used in training it (and optionally validated on yet another
dataset after that). For the purpose of our models, we will be partitioning our
dataset into two datasets: training and testing. Let's have a look at the code:

from sklearn.model_selection import train_test_split

def create_train_split_group(X, Y, split_ratio=0.8):
 return train_test_split(X, Y, shuffle=False,
train_size=split_ratio)

In this code, the following applies:

We used a default split ratio of 80%, so 80% of the entire dataset is used for
training, and the remaining 20% is used for testing.
There are more advanced splitting methods to account for distributions of
underlying data (such as we want to avoid ending up with a training/testing
dataset that is not truly representative of actual market conditions).

Predicting the Markets with Basic Machine Learning Chapter 3

[87]

Creating predictive models using linear
regression methods
Now that we know how to get the datasets that we need, how to quantify what we are
trying to predict (objectives), and how to split data into training and testing datasets to
evaluate our trained models on, let's dive into applying some basic machine learning
techniques to our datasets:

First, we will start with regression methods, which can be linear as well as non-
linear.
Ordinary Least Squares (OLS) is the most basic linear regression model, which
is where we will start from.
Then, we will look into Lasso and Ridge regression, which are extensions of
OLS, but which include regularization and shrinkage features (we will discuss
these aspects in more detail later).
Elastic Net is a combination of both Lasso and Ridge regression methods.
Finally, our last regression method will be decision tree regression, which is
capable of fitting non-linear models.

Ordinary Least Squares
Given observations of the target variables, rows of features values, and each row
of dimension , OLS seeks to find the weights of dimension that minimize the
residual sum of squares of differences between the target variable and the predicted
variable predicted by linear approximation:

, which is the best fit for the equation , where is the
 matrix of feature values, is the matrix/vector of weights/coefficients

assigned to each of the feature values, and is the matrix/vector of the
target variable observation on our training dataset.

 Here is an example of the matrix operations involved for and :

Predicting the Markets with Basic Machine Learning Chapter 3

[88]

Intuitively, it is very easy to understand OLS with a single feature variable and a
single target variable by visualizing it as trying to draw a line that has the best fit.
OLS is just a generalization of this simple idea in much higher dimensions, where

is tens of thousands of observations, and is thousands of features values.
The typical setup in is much larger than (many more observations in
comparison to the number of feature values), otherwise the solution is not
guaranteed to be unique.

There are closed form solutions to this problem where but, in practice,
these are better implemented by iterative solutions, but we'll skip the details of
all of that for now.
The reason why we prefer to minimize the sum of the squares of the error terms
is so that massive outliers are penalized more harshly and don't end up throwing
off the entire fit.

There are many underlying assumptions for OLS in addition to the assumption that the
target variable is a linear combination of the feature values, such as the independence of
feature values themselves, and normally distributed error terms. The following diagram is
a very simple example showing a relatively close linear relationship between two arbitrary
variables. Note that it is not a perfect linear relationship, in other words, not all data points
lie perfectly on the line and we have left out the X and Y labels because these can be any
arbitrary variables. The point here is to demonstrate an example of what a linear
relationship visualization looks like. Let's have a look at the following diagram:

Predicting the Markets with Basic Machine Learning Chapter 3

[89]

Let's start by loading up Google data in the code, using the same method that we1.
introduced in the previous section:

goog_data = load_financial_data(
 start_date='2001-01-01',
 end_date='2018-01-01',
 output_file='goog_data_large.pkl')

Now, we create and populate the target variable vector, Y, for regression in the2.
following code. Remember that what we are trying to predict in regression is
magnitude and the direction of the price change from one day to the next:

goog_data, X, Y = create_regression_trading_condition(goog_data)

With the help of the code, let's quickly create a scatter plot for the two features3.
we have: High-Low price of the day and Open-Close price of the day against the
target variable, which is Price-Of-Next-Day - Price-Of-Today (future price):

pd.plotting.scatter_matrix(goog_data[['Open-Close', 'High-Low',
'Target']], grid=True, diagonal='kde')

This code will return the following output. Let's have a look at the plot:

Predicting the Markets with Basic Machine Learning Chapter 3

[90]

Finally, as shown in the code, let's split 80% of the available data into the training4.
feature value and target variable set (X_train, Y_train), and the remaining 20%
of the dataset into the out-sample testing feature value and target variable set
(X_test, Y_test):

X_train,X_test,Y_train,Y_test=create_train_split_group(X,Y,split_ra
tio=0.8)

Now, let's fit the OLS model as shown here and observe the model we obtain:5.

from sklearn import linear_model
ols = linear_model.LinearRegression()
ols.fit(X_train, Y_train)

The coefficients are the optimal weights assigned to the two features by the fit6.
method. We will print the coefficients as shown in the code:

print('Coefficients: \n', ols.coef_)

This code will return the following output. Let's have a look at the coefficients:

Coefficients:
[[0.02406874 -0.05747032]]

The next block of code quantifies two very common metrics that test goodness of7.
fit for the linear model we just built. Goodness of fit means how well a given
model fits the data points observed in training and testing data. A good model is
able to closely fit most of the data points and errors/deviations between observed
and predicted values are very low. Two of the most popular metrics for linear
regression models are mean_squared_error , which is what we
explored as our objective to minimize when we introduced OLS, and R-squared (

), which is another very popular metric that measures how well the fitted
model predicts the target variable when compared to a baseline model whose
prediction output is always the mean of the target variable based on training

data, that is, . We will skip the exact formulas for computing but,
intuitively, the closer the value to 1, the better the fit, and the closer
the value to 0, the worse the fit. Negative values mean that the model fits
worse than the baseline model. Models with negative values usually indicate
issues in the training data or process and cannot be used:

from sklearn.metrics import mean_squared_error, r2_score

The mean squared error
print("Mean squared error: %.2f"

Predicting the Markets with Basic Machine Learning Chapter 3

[91]

 % mean_squared_error(Y_train, ols.predict(X_train)))

Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(Y_train,
ols.predict(X_train)))

The mean squared error
print("Mean squared error: %.2f"
 % mean_squared_error(Y_test, ols.predict(X_test)))

Explained variance score: 1 is perfect prediction
print('Variance score: %.2f' % r2_score(Y_test,
ols.predict(X_test)))

This code will return the following output:

Mean squared error: 27.36
Variance score: 0.00
Mean squared error: 103.50
Variance score: -0.01

Finally, as shown in the code, let's use it to predict prices and calculate strategy8.
returns:

goog_data['Predicted_Signal'] = ols.predict(X)
goog_data['GOOG_Returns'] = np.log(goog_data['Close'] /
goog_data['Close'].shift(1))

def calculate_return(df, split_value, symbol):
 cum_goog_return = df[split_value:]['%s_Returns' %
symbol].cumsum() * 100
 df['Strategy_Returns'] = df['%s_Returns' % symbol] *
df['Predicted_Signal'].shift(1)
 return cum_goog_return

def calculate_strategy_return(df, split_value, symbol):
 cum_strategy_return =
df[split_value:]['Strategy_Returns'].cumsum() * 100
 return cum_strategy_return

cum_goog_return = calculate_return(goog_data,
split_value=len(X_train), symbol='GOOG')
cum_strategy_return = calculate_strategy_return(goog_data,
split_value=len(X_train), symbol='GOOG')

def plot_chart(cum_symbol_return, cum_strategy_return, symbol):
 plt.figure(figsize=(10, 5))
 plt.plot(cum_symbol_return, label='%s Returns' % symbol)

Predicting the Markets with Basic Machine Learning Chapter 3

[92]

 plt.plot(cum_strategy_return, label='Strategy Returns')
 plt.legend()

plot_chart(cum_goog_return, cum_strategy_return, symbol='GOOG')

def sharpe_ratio(symbol_returns, strategy_returns):
 strategy_std = strategy_returns.std()
 sharpe = (strategy_returns - symbol_returns) / strategy_std
 return sharpe.mean()

print(sharpe_ratio(cum_strategy_return, cum_goog_return))

This code will return the following output:

2.083840359081768

Let's now have a look at the graphical representation that is derived from the code:

Here, we can observe that the simple linear regression model using only the two features,
Open-Close and High-Low, returns positive returns. However, it does not outperform the
Google stock's return because it has been increasing in value since inception. But since that
cannot be known ahead of time, the linear regression model, which does not assume/expect
increasing stock prices, is a good investment strategy.

Predicting the Markets with Basic Machine Learning Chapter 3

[93]

Regularization and shrinkage – LASSO and Ridge
regression
Now that we have covered OLS, we will try to improve on that by using regularization and
coefficient shrinkage using LASSO and Ridge regression. One of the problems with OLS is
that occasionally, for some datasets, the coefficients assigned to the predictor variables can
grow to be very large. Also, OLS can end up assigning non-zero weights to all predictors
and the total number of predictors in the final predictive model can be a very large number.
Regularization tries to address both problems, that is, the problem of too many predictors
and the problem of predictors with very large coefficients. Too many predictors in the final
model is disadvantageous because it leads to overfitting, in addition to requiring more
computations to predict. Predictors with large coefficients are disadvantageous because a
few predictors with large coefficients can overpower the entire model's prediction, and
small changes in predictor values can cause large swings in predicted output. We address
this by introducing the concepts of regularization and shrinkage.

Regularization is the technique of introducing a penalty term on the coefficient weights and
making that a part of the mean squared error, which regression tries to minimize.
Intuitively, what this does is that it will let coefficient values grow, but only if there is a
comparable decrease in MSE values. Conversely, if reducing the coefficient weights doesn't
increase the MSE values too much, then it will shrink those coefficients. The extra penalty
term is known as the regularization term, and since it results in a reduction of the
magnitudes of coefficients, it is known as shrinkage.

Depending on the type of penalty term involving magnitudes of coefficients, it is either L1
regularization or L2 regularization. When the penalty term is the sum of the absolute values
of all coefficients, this is known as L1 regularization (LASSO), and, when the penalty term
is the sum of the squared values of the coefficients, this is known as L2 regularization
(Ridge). It is also possible to combine both L1 and L2 regularization, and that is known as
elastic net regression. To control how much penalty is added because of these
regularization terms, we control it by tuning the regularization hyperparameter. In the case
of elastic net regression, there are two regularization hyperparameters, one for the L1
penalty and the other one for the L2 penalty.

Let's apply Lasso regression to our dataset and inspect the coefficients in the following
code. With a regularization parameter of 0.1, we see that the first predictor gets assigned a
coefficient that is roughly half of what was assigned by OLS:

from sklearn import linear_model

Fit the model
lasso = linear_model.Lasso(alpha=0.1)

Predicting the Markets with Basic Machine Learning Chapter 3

[94]

lasso.fit(X_train, Y_train)

The coefficients
print('Coefficients: \n', lasso.coef_)

This code will return the following output:

Coefficients:
[0.01673918 -0.04803374]

If the regularization parameter is increased to 0.6, the coefficients shrink much further to [
0. -0.00540562], and the first predictor gets assigned a weight of 0, meaning that predictor
can be removed from the model. L1 regularization has this additional property of being
able to shrink coefficients to 0, thus having the extra advantage of being useful for feature
selection, in other words, it can shrink the model size by removing some predictors.

Now, let's apply Ridge regression to our dataset and observe the coefficients:

from sklearn import linear_model

Fit the model
ridge = linear_model.Ridge(alpha=10000)
ridge.fit(X_train, Y_train)

The coefficients
print('Coefficients: \n', ridge.coef_)

This code will return the following output:

Coefficients:
[[0.01789719 -0.04351513]]

Decision tree regression
The disadvantage of the regression methods we've seen so far is that they are all linear
models, meaning they can only capture relationships between predictors and target
variables if the underlying relationship between them is linear.

Decision tree regression can capture non-linear relationships, thus allowing for more
complex models. Decision trees get their name because they are structured like an upside-
down tree, with decision nodes or branches and result nodes or leaf nodes. We start at the
root of the tree and then, at each step, we inspect the value of our predictors and pick a
branch to follow to the next node. We continue following branches until we get to a leaf
node and our final prediction is then the value of that leaf node. Decision trees can be used
for classification or regression, but here, we will look at using it for regression only.

Predicting the Markets with Basic Machine Learning Chapter 3

[95]

Creating predictive models using linear
classification methods
In the first part of this chapter, we reviewed trading strategies based on regression machine
learning algorithms. In this second part, we will focus on the classification of machine
learning algorithms and another supervised machine learning method utilizing known
datasets to make predictions. Instead of the output variable of the regression being a
numerical (or continuous) value, the classification output is a categorical (or discrete value).
We will use the same method as the regression analysis by finding the mapping function (f)
such that whenever there is new input data (x), the output variable (y) for the dataset can
be predicted.

In the following subsections, we will review three classification machine learning methods:

K-nearest neighbors
Support vector machine
Logistic regression

K-nearest neighbors
K-nearest neighbors (or KNN) is a supervised method. Like the prior methods we saw in
this chapter, the goal is to find a function predicting an output, y, from an unseen
observation, x. Unlike a lot of other methods (such as linear regression), this method
doesn't use any specific assumption about the distribution of the data (it is referred to as a
non-parametric classifier).

The KNN algorithm is based on comparing a new observation to the K most similar
instances. It can be defined as a distance metric between two data points. One of the most
used frequently methods is the Euclidean distance. The following is the derivative:

d(x,y)=(x1−y1)^2+(x2−y2)^2+…+(xn−yn)^2

When we review the documentation of the Python function, KNeighborsClassifier, we
can observe different types of parameters:

Predicting the Markets with Basic Machine Learning Chapter 3

[96]

One of them is the parameter, p, which can pick the type of distance.

When p=1, the Manhattan distance is used. The Manhattan distance is the sum of
the horizontal and vertical distances between two points.
When p=2, which is the default value, the Euclidean distance is used.
When p>2, this is the Minkowski distance, which is a generalization of the
Manhattan and Euclidean methods.
d(x,y)=(|x1−y1|^p+|x2−y2|^p+…+|xn−yn|^p)^1/p.

The algorithm will calculate the distance between a new observation and all the training
data. This new observation will belong to the group of K points that are the closest to this
new observation. Then, condition probabilities will be calculated for each class. The new
observation will be assigned to the class with the highest probability. The weakness of this
method is the time to associate the new observation to a given group.

In the code, in order to implement this algorithm, we will use the functions we declared in
the first part of this chapter:

Let's get the Google data from January 1, 2001 to January 1, 2018:1.

goog_data=load_financial_data(start_date='2001-01-01',
 end_date = '2018-01-01',
 output_file='goog_data_large.pkl')

We create the rule when the strategy will take a long position (+1) and a short2.
position (-1), as shown in the following code:

X,Y=create_trading_condition(goog_data)

We prepare the training and testing dataset as shown in the following code:3.

X_train,X_test,Y_train,Y_test=\
 create_train_split_group(X,Y,split_ratio=0.8)

In this example, we choose a KNN with K=15. We will train this model using the4.
training dataset as shown in the following code:

knn=KNeighborsClassifier(n_neighbors=15)
knn.fit(X_train, Y_train)

accuracy_train = accuracy_score(Y_train, knn.predict(X_train))
accuracy_test = accuracy_score(Y_test, knn.predict(X_test))

Predicting the Markets with Basic Machine Learning Chapter 3

[97]

Once the model is created, we are going to predict whether the price goes up or5.
down and store the values in the original data frame, as shown in the following
code:

goog_data['Predicted_Signal']=knn.predict(X)

In order to compare the strategy using the KNN algorithm, we will use the return6.
of the GOOG symbol without d, as shown in the following code:

goog_data['GOOG_Returns']=np.log(goog_data['Close']/
 goog_data['Close'].shift(1))

cum_goog_return=calculate_return(goog_data,split_value=len(X_train)
,symbol='GOOG')
cum_strategy_return=
calculate_strategy_return(goog_data,split_value=len(X_train))

plot_chart(cum_goog_return, cum_strategy_return,symbol='GOOG')

This code will return the following output. Let's have a look at the plot:

Predicting the Markets with Basic Machine Learning Chapter 3

[98]

Support vector machine
Support vector machine (SVM) is a supervised machine learning method. As previously
seen, we can use this method for regression, but also for classification. The principle of this
algorithm is to find a hyper plan that separates the data into two classes.

Let's have a look at the following code, that implements the same:

Fit the model
svc=SVC()
svc.fit(X_train, Y_train)

Forecast value
goog_data['Predicted_Signal']=svc.predict(X)
goog_data['GOOG_Returns']=np.log(goog_data['Close']/
 goog_data['Close'].shift(1))

cum_goog_return=calculate_return(goog_data,split_value=len(X_train),symbol=
'GOOG')
cum_strategy_return=
calculate_strategy_return(goog_data,split_value=len(X_train))

plot_chart(cum_goog_return, cum_strategy_return,symbol='GOOG')

In this example, the following applies:

Instead of instantiating a class to create a KNN method, we used the SVC class.
The class constructor has several parameters adjusting the behavior of the
method to the data you will work on.
The most important one is the parameter kernel. This defines the method of
building the hyper plan.
In this example, we just use the default values of the constructor.

Predicting the Markets with Basic Machine Learning Chapter 3

[99]

Now, let's have a look at the output of the code:

Logistic regression
Logistic regression is a supervised method that works for classification. Based on linear
regression, logistic regression transforms its output using the logistic sigmoid, returning a
probability value that maps different classes:

Predicting the Markets with Basic Machine Learning Chapter 3

[100]

Summary
In this chapter, we got a basic understanding of how to use machine learning in trading.
We started with going through the essential terminology and notation. We learned to create
predictive models that predict price movement using linear regression methods. We built
several codes using Python's scikit-learn library. We saw how to create predictive models
that predict buy and sell signals using linear classification methods. We also demonstrated
how to apply these machine learning methods to a simple trading strategy. We also went
through the tools that we can use to create a trading strategy.

The next chapter will introduce trading rules that can help to improve your trading
strategies.

3
Section 3: Algorithmic Trading

Strategies
In this section, you will learn about the workings and implementation of some well-known
trading strategies as well as learn how to trade on the basis of basic information (trends,
seasonality, the correlation between symbols in the market, and correlation between
events).

This section comprises the following chapters:

Chapter 4, Classical Trading Strategies Driven by Human Intuition
Chapter 5, Sophisticated Algorithmic Strategies
Chapter 6, Managing Risk in Algorithmic Strategies

4
Classical Trading Strategies

Driven by Human Intuition
During the previous chapters, we used statistical methods to predict market price
movement from historical data. You may think that you know how to manipulate data, but
how can these statistical techniques be applied to real trading? After spending so much
time working on data, you may also want to know some key trading strategies that you can
apply to make money.

In this chapter, we will talk about basic algorithmic strategies that follow human intuition.
We will learn how to create trading strategies based on momentum and trend following,
and a strategy that works for markets with mean reversion behavior. We will also talk
about their advantages and disadvantages. By the end of this chapter, you will know how
to use an idea to create a basic trading strategy.

This chapter will cover the following topics:

Creating a trading strategy based on momentum and trend following
Creating a trading strategy that works for markets with mean reversion behavior
Creating trading strategies that operate on linearly correlated groups of trading
instruments

Classical Trading Strategies Driven by Human Intuition Chapter 4

[103]

Creating a trading strategy based on
momentum and trend following
Momentum strategy uses the trend to predict the future of a price. For instance, if the price
of an asset has increased for the last 20 days, it is likely that this price will continue rising.
The moving average strategy is one example of momentum strategy.

Momentum strategies assume that the future will follow the past by following an upward
or a downward trend (divergence or trend trading). Momentum investment has been used
for decades: buying low, selling high, buying high, and selling higher, selling the losers and letting
the winners ride; all these techniques are the origin of momentum trading. Momentum
investing adopts short-term positions in relation to financial products going up and sells
them when they go down. When we use a momentum strategy, we try to be ahead of the
market; we trade fast, and then we let the market come to the same conclusion. The earlier
we realize that there is a change, the more profitable we will be.

When you start working on a momentum strategy, you need to select the assets you are
going to focus on while considering the risk for trading these assets. You need to ensure
entering at the right time, but also not changing position too late. One of the most
important drawback of this kind of strategy is the time and the fees. If your trading system
is too slow, you won't manage to capture the opportunity to make money before the
competition. Aside from this problem, we have to add the transaction fees, which are not
negligible. By the very nature of the momentum strategy, the accuracy of this model is very
low if news impacts the market.

Advantages of the momentum strategy:

This class of strategy is easy to understand.

Disadvantages of the momentum strategy:

This class of strategy doesn't take into account noises or special events. It has a
tendency to smooth out prior events.
The transaction fees can be potentially high owing to the number of orders.

Classical Trading Strategies Driven by Human Intuition Chapter 4

[104]

Examples of momentum strategies
The following are some examples of momentum strategies:

Moving average crossover: This momentum strategy principle revolves around
calculating the moving average for a price of an asset and detecting when the
price moves from one side of a moving average to the other. This means that
when the current price intersects the moving average, there is a change in the
momentum. However, this can lead to too many momentum changes. To limit
this effect, we can use the dual moving average crossover.

Dual moving average crossover: Because we want to limit the number of
switches, we introduce an additional moving average. There will be a short-term
moving average and a long-term moving average. With this implementation, the
momentum shifts in the direction of the short-term moving average. When the
short-term moving average crosses the long-term moving average and its value
exceeds that of the long-term moving average, the momentum will be upward
and this can lead to the adoption of a long position. If the movement is in the
opposite direction, this can lead to take a short position instead.

Turtle trading: Unlike the two other implementations, this momentum strategy
doesn't use any moving average but relies on having a number of specific days,
which are high and low.

Python implementation
For the Python implementation of this section, we will implement the dual moving average.
This strategy is based on the indicator of moving average. It is widely used to smooth out
price movements by filtering non-significant noises. Let's have a look at the
implementations in the following subsections.

Dual moving average
In this section, we will implement the double moving average strategy. We will use the
same code pattern from the prior chapters to get the GOOG data:

This code will first check whether the goog_data_large.pkl file exists. If the1.
file does not exist, we will fetch the GOOG data from Yahoo finance:

import pandas as pd
 import numpy as np

Classical Trading Strategies Driven by Human Intuition Chapter 4

[105]

 from pandas_datareader import data

 def load_financial_data(start_date, end_date,output_file):
 try:
 df = pd.read_pickle(output_file)
 print('File data found...reading GOOG data')
 except FileNotFoundError:
 print('File not found...downloading the GOOG data')
 df = data.DataReader('GOOG', 'yahoo', start_date,
end_date)
 df.to_pickle(output_file)
 return df

 goog_data=load_financial_data(start_date='2001-01-01',
 end_date = '2018-01-01',
 output_file='goog_data_large.pkl')

Next, as shown in the preceding code, we will create a2.
double_moving_average function with parameters fixing the size of the two
moving averages returning a data frame:

short_mavg: Short-term moving average values
long_mavg: Long-term moving average values
signal: True if the short-term moving average is higher than the long-term
moving average
orders: 1 for the buy order, and -1 for the sell order:

def double_moving_average(financial_data, short_window,
long_window):
 signals = pd.DataFrame(index=financial_data.index)
 signals['signal'] = 0.0
 signals['short_mavg'] = financial_data['Close'].\
 rolling(window=short_window,
 min_periods=1, center=False).mean()
 signals['long_mavg'] = financial_data['Close'].\
 rolling(window=long_window,
 min_periods=1, center=False).mean()
 signals['signal'][short_window:] =\
 np.where(signals['short_mavg'][short_window:]
 >
signals['long_mavg'][short_window:], 1.0, 0.0)
 signals['orders'] = signals['signal'].diff()
 return signals

 ts=double_moving_average(goog_data,20,100)

Classical Trading Strategies Driven by Human Intuition Chapter 4

[106]

The code will build the data frame, ts:

This data frame will contain the signal column storing the signal of going
long (value 1) and going short (value 0)
The column orders will contain the side of the orders (buy or sell)

We will now write the code to display the curve representing the orders for the3.
dual moving strategy:

 fig = plt.figure()
 ax1 = fig.add_subplot(111, ylabel='Google price in $')
 goog_data["Adj Close"].plot(ax=ax1, color='g', lw=.5)
 ts["short_mavg"].plot(ax=ax1, color='r', lw=2.)
 ts["long_mavg"].plot(ax=ax1, color='b', lw=2.)

 ax1.plot(ts.loc[ts.orders== 1.0].index,
 goog_data["Adj Close"][ts.orders == 1.0],
 '^', markersize=7, color='k')

 ax1.plot(ts.loc[ts.orders== -1.0].index,
 goog_data["Adj Close"][ts.orders == -1.0],
 'v', markersize=7, color='k')

 plt.legend(["Price","Short mavg","Long mavg","Buy","Sell"])
 plt.title("Double Moving Average Trading Strategy")

 plt.show()

This code will return the following output. Let's have a look at the plot:

Classical Trading Strategies Driven by Human Intuition Chapter 4

[107]

The plot represents the GOOG prices and the two moving averages associated with this price.
Each order is represented by an arrow.

Naive trading strategy
In this section, we will implement a naive strategy based on the number of times a price
increases or decreases. This strategy is based on the historical price momentum. Let's have a
look at the code:

def naive_momentum_trading(financial_data, nb_conseq_days):
 signals = pd.DataFrame(index=financial_data.index)
 signals['orders'] = 0
 cons_day=0
 prior_price=0
 init=True
 for k in range(len(financial_data['Adj Close'])):
 price=financial_data['Adj Close'][k]
 if init:
 prior_price=price
 init=False
 elif price>prior_price:
 if cons_day<0:
 cons_day=0
 cons_day+=1
 elif price<prior_price:
 if cons_day>0:
 cons_day=0
 cons_day-=1
 if cons_day==nb_conseq_days:
 signals['orders'][k]=1
 elif cons_day == -nb_conseq_days:
 signals['orders'][k]=-1

 return signals

 ts=naive_momentum_trading(goog_data, 5)

In this code, the following applies:

We count the number of times a price is improved.
If the number is equal to a given threshold, we buy, assuming the price will keep
rising.
We will sell if we assume that the price will keep going down.

Classical Trading Strategies Driven by Human Intuition Chapter 4

[108]

We will display the evolution of the trading strategy by using the following code:

fig = plt.figure()
 ax1 = fig.add_subplot(111, ylabel='Google price in $')
 goog_data["Adj Close"].plot(ax=ax1, color='g', lw=.5)

 ax1.plot(ts.loc[ts.orders== 1.0].index,
 goog_data["Adj Close"][ts.orders == 1],
 '^', markersize=7, color='k')

 ax1.plot(ts.loc[ts.orders== -1.0].index,
 goog_data["Adj Close"][ts.orders == -1],
 'v', markersize=7, color='k')

 plt.legend(["Price","Buy","Sell"])
 plt.title("Turtle Trading Strategy")

 plt.show()

This code will return the following output. This curve represents the orders for the naive
momentum trading strategy:

From this plot, the following can be observed:

The naive trading strategy does not produce many orders.
We can have a higher return if we have more orders. For that, we will use the
following strategy to increase the number of orders.

Classical Trading Strategies Driven by Human Intuition Chapter 4

[109]

Turtle strategy
In this more advanced trading strategy, we are going to create a long signal when the price
reaches the highest price for the last window_size days (in this example, we will choose
50):

We will create a short signal when the price reaches its lowest point. We will get1.
out of a position by having the price crossing the moving average of the last
window_size days. This code starts the turtle_trading function by creating a
column to store the highs, the lows, and the average with a rolling window
window_size:

def turtle_trading(financial_data, window_size):
 signals = pd.DataFrame(index=financial_data.index)
 signals['orders'] = 0
 # window_size-days high
 signals['high'] = financial_data['Adj Close'].shift(1).\
 rolling(window=window_size).max()
 # window_size-days low
 signals['low'] = financial_data['Adj Close'].shift(1).\
 rolling(window=window_size).min()
 # window_size-days mean
 signals['avg'] = financial_data['Adj Close'].shift(1).\
 rolling(window=window_size).mean()

We will write the code that creates two new columns specifying the rules to place2.
an order:

The entry rule is stock price > the highest value for the window_size day.
Stock price < the lowest value for the window_size day:

 signals['long_entry'] = financial_data['Adj Close'] > signals.high
 signals['short_entry'] = financial_data['Adj Close'] < signals.low

The exit rule (when placing an order to get out of a position) will be when the3.
stock price crosses the mean of past window_size days:

 signals['long_exit'] = financial_data['Adj Close'] < signals.avg
 signals['short_exit'] = financial_data['Adj Close'] > signals.avg

Classical Trading Strategies Driven by Human Intuition Chapter 4

[110]

To draw the chart representing the orders, as shown in the code, we will give the4.
values 1 when we enter a long position, -1 when we enter a short position, and 0
for not changing anything:

 init=True
 position=0
 for k in range(len(signals)):
 if signals['long_entry'][k] and position==0:
 signals.orders.values[k] = 1
 position=1
 elif signals['short_entry'][k] and position==0:
 signals.orders.values[k] = -1
 position=-1
 elif signals['short_exit'][k] and position>0:
 signals.orders.values[k] = -1
 position = 0
 elif signals['long_exit'][k] and position < 0:
 signals.orders.values[k] = 1
 position = 0
 else:
 signals.orders.values[k] = 0
 return signals
 ts=turtle_trading(goog_data, 50)

The turtle_trading function from the code will display the plot that describes how the
strategy behaves:

Classical Trading Strategies Driven by Human Intuition Chapter 4

[111]

From the plot, the following can be observed:

The number of orders between the naive momentum strategy and the turtle
trading strategy.
On account of a higher number of orders, this strategy offers more potential of
returns than the previous one.

Creating a trading strategy that works for
markets with reversion behavior
After the momentum strategy, we will now look at another very popular type of strategy,
the mean reversion strategy. The underlying precept is that prices revert toward the mean.
Extreme events are followed by more normal events. We will find a time where a value
such as the price or the return is very different from the past values. Once established, we
will place an order by forecasting that this value will come back to the mean.

Reversion strategy uses the belief that the trend of quantity will eventually reverse. This is
the opposite of the previous strategy. If a stock return increases too fast, it will eventually
return to its average. Reversion strategies assume that any trend will go back to the average
value, either an upward or downward trend (divergence or trend trading).

Advantages of the reversion strategy:

This class of strategy is easy to understand.

Disadvantages of the reversion strategy:

This class of strategy doesn't take into account noise or special events. It has a
tendency to smooth out prior events.

Classical Trading Strategies Driven by Human Intuition Chapter 4

[112]

Examples of reversion strategies
Here are the examples of reversion strategies:

Mean reversion strategy: This strategy assumes that the value of a price/return
will return to the average value.
Unlike the mean reversion strategy, pair trading—mean reversion is based on the
correlation between two instruments. If a pair of stocks already has a high
correlation and, at some point, the correlation is diminished, it will come back to
the original level (correlation mean value). If the stock with the lower price
drops, we can long this stock and short the other stock of this pair.

Creating trading strategies that operate on
linearly correlated groups of trading
instruments
We are going through the process of implementing an example of a pair trading strategy.
The first step is to determine the pairs that have a high correlation. This can be based on the
underlying economic relationship (for example, companies having similar business plans)
or also a financial product created out of some others, such as ETF. Once we figure out
which symbols are correlated, we will create the trading signals based on the value of these
correlations. The correlation value can be the Pearson's coefficient, or a Z-score.

In case of a temporary divergence, the outperforming stock (the stock that moved up)
would have been sold and the underperforming stock (the stock that moved down) would
have been purchased. If the two stocks converge by either the outperforming stock moving
back down or the underperforming stock moving back up, or both, you will make money in
such cases. You won't make money in the event that both stocks move up or down together
with no change in the spread between them. Pairs trading is a market neutral trading
strategy as it allows traders to profit from changing market conditions:

Let's begin by creating a function establishing cointegration between pairs, as1.
shown in the following code. This function takes as inputs a list of financial
instruments and calculates the cointegration values of these symbols. The values
are stored in a matrix. We will use this matrix to display a heatmap:

def find_cointegrated_pairs(data):
 n = data.shape[1]
 pvalue_matrix = np.ones((n, n))

Classical Trading Strategies Driven by Human Intuition Chapter 4

[113]

 keys = data.keys()
 pairs = []
 for i in range(n):
 for j in range(i+1, n):
 result = coint(data[keys[i]], data[keys[j]])
 pvalue_matrix[i, j] = result[1]
 if result[1] < 0.02:
 pairs.append((keys[i], keys[j]))
 return pvalue_matrix, pairs

Next, as shown in the code, we will load the financial data by using the panda2.
data reader. This time, we load many symbols at the same time. In this example,
we use SPY (this symbol reflects market movement), APPL (technology), ADBE
(technology), LUV (airlines), MSFT (technology), SKYW (airline industry), QCOM
(technology), HPQ (technology), JNPR (technology), AMD (technology), and IBM
(technology).

Since the goal of this trading strategy is to find co-integrated symbols, we narrow
down the search space according to industry. This function will load the data of a
file from the Yahoo finance website if the data is not in the
multi_data_large.pkl file:

import pandas as pd
 pd.set_option('display.max_rows', 500)
 pd.set_option('display.max_columns', 500)
 pd.set_option('display.width', 1000)
 import numpy as np
 import matplotlib.pyplot as plt
 from statsmodels.tsa.stattools import coint
 import seaborn
 from pandas_datareader import data

 symbolsIds = ['SPY','AAPL','ADBE','LUV','MSFT','SKYW','QCOM',
 'HPQ','JNPR','AMD','IBM']

 def load_financial_data(symbols, start_date,
end_date,output_file):
 try:
 df = pd.read_pickle(output_file)
 print('File data found...reading symbols data')
 except FileNotFoundError:
 print('File not found...downloading the symbols data')
 df = data.DataReader(symbols, 'yahoo', start_date,
end_date)
 df.to_pickle(output_file)
 return df

Classical Trading Strategies Driven by Human Intuition Chapter 4

[114]

 data=load_financial_data(symbolsIds,start_date='2001-01-01',
 end_date = '2018-01-01',
 output_file='multi_data_large.pkl')

After we call the load_financial_data function, we will then call the3.
find_cointegrated_pairs function, as shown in the following code:

pvalues, pairs = find_cointegrated_pairs(data['Adj Close'])

We will use the seaborn package to draw the heatmap. The code calls the4.
heatmap function from the seaborn package. Heatmap will use the list of
symbols on the x and y axes. The last argument will mask the p-values higher
than 0.98:

seaborn.heatmap(pvalues, xticklabels=symbolsIds,
 yticklabels=symbolsIds, cmap='RdYlGn_r',
 mask = (pvalues >= 0.98))

This code will return the following map as an output. This map shows the p-
values of the return of the coin:

If a p-value is lower than 0.02, this means the null hypothesis is rejected.
This means that the two series of prices corresponding to two different
symbols can be co-integrated.
This means that the two symbols will keep the same spread on average. On
the heatmap, we observe that the following symbols have p-values lower
than 0.02:

Classical Trading Strategies Driven by Human Intuition Chapter 4

[115]

This screenshot represents the heatmap measuring the cointegration between a
pair of symbols. If it is red, this means that the p-value is 1, which means that the
null hypothesis is not rejected. Therefore, there is no significant evidence that the
pair of symbols is co-integrated. After selecting the pairs we will use for trading,
let's focus on how to trade these pairs of symbols.

First, let's create a pair of symbols artificially to get an idea of how to trade. We5.
will use the following libraries:

import numpy as np
 import pandas as pd
 from statsmodels.tsa.stattools import coint
 import matplotlib.pyplot as plt

 As shown in the code, let's create a symbol return that we will call Symbol1. The6.
value of the Symbol1 price starts from a value of 10 and, every day, it will vary
based on a random return (following a normal distribution). We will draw the
price values by using the function plot of the matplotlib.pyplot package:

Set a seed value to make the experience reproducible
 np.random.seed(123)
 # Generate Symbol1 daily returns
 Symbol1_returns = np.random.normal(0, 1, 100)
 # Create a series for Symbol1 prices
 Symbol1_prices = pd.Series(np.cumsum(Symbol1_returns),
name='Symbol1') + 10
 Symbol1_prices.plot(figsize=(15,7))
 plt.show()

We build the Symbol2 prices based on the behavior of the Symbol1 prices, as7.
shown in the code. In addition to copying the behavior of Symbol1, we will add
noises. The noise is a random value following a normal distribution. The
introduction of this noise is designed to mimic market fluctuations. It changes the
spread value between the two symbol prices:

Create a series for Symbol2 prices
 # We will copy the Symbol1 behavior
 noise = np.random.normal(0, 1, 100)
 Symbol2_prices = Symbol1_prices + 10 + noise
 Symbol2_prices.name = 'Symbol2'
 plt.title("Symbol 1 and Symbol 2 prices")
 Symbol1_prices.plot()
 Symbol2_prices.plot()
 plt.show()

Classical Trading Strategies Driven by Human Intuition Chapter 4

[116]

This code will return the following output. The plot shows the evolution of the
price of Symbol 1 and Symbol 2:

In the code, we will check the cointegration between the two symbols by using8.
the coint function. This takes two lists/series of values and performs a test to
check whether the two series are co-integrated:

score, pvalue, _ = coint(Symbol1_prices, Symbol2_prices)

In the code, pvalue contains the p-score. Its value is 10-13, which means that we
can reject the null hypothesis. Therefore, these two symbols are co-integrated.

We will define the zscore function. This function returns how far a piece of data9.
is from the population mean. This will help us to choose the direction of trading.
If the return value of this function is positive, this means that the symbol price is
higher than the average price value. Therefore, its price is expected to go down
or the paired symbol value will go up. In this case, we will want to short this
symbol and long the other one. The code implements the zscore function:

 def zscore(series):
 return (series - series.mean()) / np.std(series)

Classical Trading Strategies Driven by Human Intuition Chapter 4

[117]

We will use the ratio between the two symbol prices. We will need to set the10.
threshold that defines when a given price is far off the mean price value. For that,
we will need to use specific values for a given symbol. If we have many symbols
we want to trade with, this will imply that this analysis be performed for all the
symbols. Since we want to avoid this tedious work, we are going to normalize
this study by analyzing the ratio of the two prices instead. As a result, we
calculate the ratios of the Symbol 1 price against the Symbol 2 price. Let's have a
look at the code:

 ratios = Symbol1_prices / Symbol2_prices
 ratios.plot()

This code will return the following output. In the diagram, we show the variation
in the ratio between symbol 1 and symbol 2 prices:

Let's draw the chart showing when we will place orders with the following code:11.

 train = ratios[:75]
 test = ratios[75:]

 plt.axhline(ratios.mean())
 plt.legend([' Ratio'])
 plt.show()

Classical Trading Strategies Driven by Human Intuition Chapter 4

[118]

 zscore(ratios).plot()
 plt.axhline(zscore(ratios).mean(),color="black")
 plt.axhline(1.0, color="red")
 plt.axhline(-1.0, color="green")
 plt.show()

This code will return the following output. The curve demonstrates the following:

The Z-score evolution with horizontal lines at -1 (green), +1 (red), and the
average of Z-score (black).
The average of Z-score is 0.
When the Z-score reaches -1 or +1, we will use this event as a trading signal.
The values +1 and -1 are arbitrary values.
It should be set depending on the study we will run in order to create this
trading strategy:

Every time the Z-score reaches one of the thresholds, we have a trading signal.12.
As shown in the code, we will present a graph, each time we go long for Symbol
1 with a green marker, and each time we go short with a red marker:

 ratios.plot()
 buy = ratios.copy()
 sell = ratios.copy()

Classical Trading Strategies Driven by Human Intuition Chapter 4

[119]

 buy[zscore(ratios)>-1] = 0
 sell[zscore(ratios)<1] = 0
 buy.plot(color="g", linestyle="None", marker="^")
 sell.plot(color="r", linestyle="None", marker="v")
 x1,x2,y1,y2 = plt.axis()
 plt.axis((x1,x2,ratios.min(),ratios.max()))
 plt.legend(["Ratio", "Buy Signal", "Sell Signal"])
 plt.show()

This code will return the following output. Let's have a look at the plot:

In this example, going long for Symbol 1 means that we will send a buy order for
Symbol 1, while sending a sell order for Symbol 2 concurrently.

Next, we will write the following code, which represents the buy and sell order13.
for each symbol:

Symbol1_prices.plot()
 symbol1_buy[zscore(ratios)>-1] = 0
 symbol1_sell[zscore(ratios)<1] = 0
 symbol1_buy.plot(color="g", linestyle="None", marker="^")
 symbol1_sell.plot(color="r", linestyle="None", marker="v")

 Symbol2_prices.plot()
 symbol2_buy[zscore(ratios)<1] = 0
 symbol2_sell[zscore(ratios)>-1] = 0
 symbol2_buy.plot(color="g", linestyle="None", marker="^")

Classical Trading Strategies Driven by Human Intuition Chapter 4

[120]

 symbol2_sell.plot(color="r", linestyle="None", marker="v")

 x1,x2,y1,y2 = plt.axis()
 plt.axis((x1,x2,Symbol1_prices.min(),Symbol2_prices.max()))
 plt.legend(["Symbol1", "Buy Signal", "Sell Signal","Symbol2"])
plt.show()

The following chart shows the buy and sell orders for this strategy. We see that
the orders will be placed only when zscore is higher or lower than +/-1:

Following the analysis that provided us with an understanding of the pairs that
are co-integrated, we observed that the following pairs demonstrated similar
behavior:

ADBE, MSFT
JNPR, LUV
JNPR, MSFT
JNPR, QCOM
JNPR, SKYW
JNPR, SPY

Classical Trading Strategies Driven by Human Intuition Chapter 4

[121]

We will use MSFT and JNPR to implement the strategy based on real symbols. We14.
will replace the code to build Symbol 1 and Symbol 2 with the following code.
The following code will get the real prices for MSFT and JNPR:

 Symbol1_prices = data['Adj Close']['MSFT']
 Symbol1_prices.plot(figsize=(15,7))
 plt.show()
 Symbol2_prices = data['Adj Close']['JNPR']
 Symbol2_prices.name = 'JNPR'
 plt.title("MSFT and JNPR prices")
 Symbol1_prices.plot()
 Symbol2_prices.plot()
 plt.legend()
 plt.show()

This code will return the following plots as output. Let's have a look at them:

Classical Trading Strategies Driven by Human Intuition Chapter 4

[122]

The following screenshot shows the MSFT and JNPR prices. We observe
similarities of movement between the two symbols:

When running the code that we ran previously for Symbol 1 and Symbol 2 by
getting the actual prices from JNPR and MSFT, we will obtain the following
curves:

Classical Trading Strategies Driven by Human Intuition Chapter 4

[123]

This chart reveals a large quantity of orders. The pair correlation strategy without
limitation sends too many orders. We can limit the number of orders in the same
way we did previously:

Limiting positions
Limiting the number of orders
Setting a higher Z-score threshold

In this section, we focused on when to enter a position, but we have not
addressed when to exit a position. While the Z-score value is above or below the
threshold limits (in this example, -1 or +1), a Z-score value within the range
between the threshold limits denotes an improbable change of spread between
the two symbol prices. Therefore, when this value is within this limit, this can be
regarded as an exit signal.

In the following diagram, we illustrate when we should exit a position:

In this example, the following applies:

When the Z-score is lower than -1, we short sell Symbol 1 for $3 and we buy
it for $4, while, when the Z-score is in the range [-1,+1], we exit the position
by buying Symbol 2 for $1 and selling it for $3.
If we just get 1 share of the two symbols, the profit of this trade will be ($3-
$4)+($3-$1)=$1.

Classical Trading Strategies Driven by Human Intuition Chapter 4

[124]

We will create a data frame, pair_correlation_trading_strategy, in the15.
code. This contains information relating to orders and position and we will use
this data frame to calculate the performance of this pair correlation trading
strategy:

pair_correlation_trading_strategy =
pd.DataFrame(index=Symbol1_prices.index)
 pair_correlation_trading_strategy['symbol1_price']=Symbol1_prices
pair_correlation_trading_strategy['symbol1_buy']=np.zeros(len(Symbo
l1_prices))
pair_correlation_trading_strategy['symbol1_sell']=np.zeros(len(Symb
ol1_prices))
pair_correlation_trading_strategy['symbol2_buy']=np.zeros(len(Symbo
l1_prices))
pair_correlation_trading_strategy['symbol2_sell']=np.zeros(len(Symb
ol1_prices))

We will limit the number of orders by reducing the position to one share. This16.
can be a long or short position. For a given symbol, when we have a long
position, a sell order is the only one that is allowed. When we have a short
position, a buy order is the only one that is allowed. When we have no position,
we can either go long (by buying) or go short (by selling). We will store the price
we use to send the orders. For the paired symbol, we will do the opposite. When
we sell Symbol 1, we will buy Symbol 2, and vice versa:

 position=0
 for i in range(len(Symbol1_prices)):
 s1price=Symbol1_prices[i]
 s2price=Symbol2_prices[i]
 if not position and symbol1_buy[i]!=0:
pair_correlation_trading_strategy['symbol1_buy'][i]=s1price
 pair_correlation_trading_strategy['symbol2_sell'][i] =
s2price
 position=1
 elif not position and symbol1_sell[i]!=0:
 pair_correlation_trading_strategy['symbol1_sell'][i] =
s1price
 pair_correlation_trading_strategy['symbol2_buy'][i] =
s2price
 position = -1
 elif position==-1 and (symbol1_sell[i]==0 or
i==len(Symbol1_prices)-1):
 pair_correlation_trading_strategy['symbol1_buy'][i] =
s1price
 pair_correlation_trading_strategy['symbol2_sell'][i] =
s2price
 position = 0

Classical Trading Strategies Driven by Human Intuition Chapter 4

[125]

 elif position==1 and (symbol1_buy[i] == 0 or
i==len(Symbol1_prices)-1):
 pair_correlation_trading_strategy['symbol1_sell'][i] =
s1price
 pair_correlation_trading_strategy['symbol2_buy'][i] =
s2price
 position = 0

This code will return the following output. The plot shows the decrease in the
number of orders. We will now calculate the profit and loss generated by this
strategy:

We will now write the code that calculates the profit and loss of the pair17.
correlation strategy. We make a subtraction between the vectors containing the
Symbol 1 and Symbol 2 prices. We will then add these positions to create a
representation of the profit and loss:

pair_correlation_trading_strategy['symbol1_position']=\
 pair_correlation_trading_strategy['symbol1_buy']-
pair_correlation_trading_strategy['symbol1_sell']

 pair_correlation_trading_strategy['symbol2_position']=\
 pair_correlation_trading_strategy['symbol2_buy']-
pair_correlation_trading_strategy['symbol2_sell']

Classical Trading Strategies Driven by Human Intuition Chapter 4

[126]

pair_correlation_trading_strategy['symbol1_position'].cumsum().plot
() # Calculate Symbol 1 P&L
pair_correlation_trading_strategy['symbol2_position'].cumsum().plot
() # Calculate Symbol 2 P&L

 pair_correlation_trading_strategy['total_position']=\
pair_correlation_trading_strategy['symbol1_position']+pair_correlat
ion_trading_strategy['symbol2_position'] # Calculate total P&L
pair_correlation_trading_strategy['total_position'].cumsum().plot()

This code will return the following output. In the plot, the blue line represents the
profit and loss for Symbol 1, and the orange line represents the profit and loss for
Symbol 2. The green line represents the total profit and loss:

Until this part, we traded only one share. In regular trading, we will trade
hundreds/thousands of shares. Let's analyze what can happen when we use a
pair-correlation trading strategy.

Classical Trading Strategies Driven by Human Intuition Chapter 4

[127]

Suppose we have a pair of two symbols (Symbol 1 and Symbol 2). Let's assume
that the Symbol 1 price is $100 and the Symbol 2 price is $10. If we trade a given
fixed amount of shares of Symbol 1 and Symbol 2, we can use 100 shares. If we
have a long signal for Symbol 1, we will buy Symbol 1 for $100. The notional
position will be 100 x $100 = $10,000. Since it is a long signal for Symbol 1, it is a
short signal for Symbol 2. We will have a Symbol 2 notional position of 100 x $10
= $1,000. We will have a delta of $9,000 between these two positions.

By having a large price differential, this places more emphasis on the symbol with
the higher price. So it means when that symbol leads the return. Additionally,
when we trade and invest money on the market, we should hedge positions
against market moves. For example, if we invest in an overall long position by
buying many symbols, we think that these symbols will outperform the market.
Suppose the whole market is depreciating, but these symbols are indeed
outperforming the other ones. If we want to sell them, we will certainly lose
money since the market will collapse. For that, we usually hedge our positions by
investing in something that will move on the opposite side of our positions. In the
example of a pair trading correlation, we should aim to have a neutral position by
investing the same notional in Symbol 1 and in Symbol 2. By taking the example
of having a Symbol 1 price that is markedly different to the Symbol 2 price, we
cannot use the hedge of Symbol 2 if we invest the same number of shares as we
invest in Symbol 1.

Because we don't want to be in either of the two situations described earlier, we
are going to invest the same notional in Symbol 1 and Symbol 2. Let's say we
want to buy 100 shares of Symbol 1. The notional position we will have is 100 x
$100 = $10,000. To get the same equivalent of notional position for Symbol 2, we
will need to get $10,000 / $10 = 1,000 shares. If we get 100 shares of Symbol 1 and
1,000 shares of Symbol 2, we will have a neutral position for this investment, and
we will not give more importance to Symbol 1 over Symbol 2.

Classical Trading Strategies Driven by Human Intuition Chapter 4

[128]

Now, let's suppose the price of symbol 2 is $3 instead of being $10. When dividing
$10,000 / $3 = 3,333 + 1/3. This means we will send an order for 3,333 shares,
which means that we will have a Symbol 1 position of $10,000 and a Symbol 2
position of 3,333 x $3 = $9,999, resulting in a delta of $1. Now suppose that the
traded amount, instead of being $10,000, was $10,000,000. This will result in a
delta of $1,000. Because we need to remove the decimal part when buying stocks,
this delta will appear for any symbols. If we trade around 200 pairs of symbols,
we may have $200,000 (200 x $1,000) of position that is not hedged. We will be
exposed to market moves. Therefore, if the market goes down, we may lose out
on this $200,000. That's why it will be important to hedge with a financial
instrument going in the opposite direction from this $200,000 position. If we have
positions with many symbols, resulting in having a residual of $200,000 of a long
position that is not covered, we will get a short position of the ETF SPY behaving
in the same way as the market moves.

We replace s1prices with s1positions from the earlier code by taking into18.
account the number of shares we want to allocate for the trading of this pair:

pair_correlation_trading_strategy['symbol1_price']=Symbol1_prices
pair_correlation_trading_strategy['symbol1_buy']=np.zeros(len(Symbo
l1_prices))
pair_correlation_trading_strategy['symbol1_sell']=np.zeros(len(Symb
ol1_prices))
pair_correlation_trading_strategy['symbol2_buy']=np.zeros(len(Symbo
l1_prices))
pair_correlation_trading_strategy['symbol2_sell']=np.zeros(len(Symb
ol1_prices))
pair_correlation_trading_strategy['delta']=np.zeros(len(Symbol1_pri
ces))
 position=0
 s1_shares = 1000000
 for i in range(len(Symbol1_prices)):
 s1positions= Symbol1_prices[i] * s1_shares
 s2positions= Symbol2_prices[i] *
int(s1positions/Symbol2_prices[i])
 delta_position=s1positions-s2positions
 if not position and symbol1_buy[i]!=0:
pair_correlation_trading_strategy['symbol1_buy'][i]=s1positions
 pair_correlation_trading_strategy['symbol2_sell'][i] =
s2positions
pair_correlation_trading_strategy['delta'][i]=delta_position
 position=1
 elif not position and symbol1_sell[i]!=0:
 pair_correlation_trading_strategy['symbol1_sell'][i] =
s1positions
 pair_correlation_trading_strategy['symbol2_buy'][i] =

Classical Trading Strategies Driven by Human Intuition Chapter 4

[129]

s2positions
 pair_correlation_trading_strategy['delta'][i] =
delta_position
 position = -1
 elif position==-1 and (symbol1_sell[i]==0 or
i==len(Symbol1_prices)-1):
 pair_correlation_trading_strategy['symbol1_buy'][i] =
s1positions
 pair_correlation_trading_strategy['symbol2_sell'][i] =
s2positions
 position = 0
 elif position==1 and (symbol1_buy[i] == 0 or
i==len(Symbol1_prices)-1):
 pair_correlation_trading_strategy['symbol1_sell'][i] =
s1positions
 pair_correlation_trading_strategy['symbol2_buy'][i] =
s2positions
 position = 0

This code will return the following output. This graph represent the positions of
Symbol 1 and Symbol 2 and the total profit and loss of this pair correlation
trading strategy:

Classical Trading Strategies Driven by Human Intuition Chapter 4

[130]

The code displays the delta position. The maximum amount is $25. Because this
amount is too low, we don't need to hedge this delta position:

pair_correlation_trading_strategy['delta'].plot()
 plt.title("Delta Position")
 plt.show()

This section concludes the implementation of a trading strategy that is based on the
correlation/cointegration with another financial product.

Summary
In this chapter, we were introduced to two intuitive trading strategies – the momentum
strategy and the mean-reversion strategy. We learned how to create a trading strategy
based on momentum and trend following. We also learned to create a trading strategy that
works for markets with reversion behavior. These two strategies are very popular in the
trading industry and are heavily used. We explained how to implement them. We got to
learned how they work, along with their advantages and disadvantages

In the next chapter, we will build on top of the basic algorithmic strategies and learn about
more advanced approaches (statistical arbitrage, pair correlation), along with their
advantages and disadvantages.

5
Sophisticated Algorithmic

Strategies
In this chapter, we will explore more sophisticated trading strategies employed by leading
market participants in the algorithmic trading business. We will build on top of the basic
algorithmic strategies and learn about more advanced approaches (such as statistical
arbitrage and pair correlation) and their advantages and disadvantages. We will learn how
to create a trading strategy that adjusts for trading instrument volatility. We will also learn
how to create a trading strategy for economic events and understand and implement the
basics of statistical arbitrage trading strategies.

This chapter will cover the following topics:

Creating a trading strategy that adjusts for trading instrument volatility
Creating a trading strategy for economic events
Understanding and implementing basic statistical arbitrage trading strategies

Sophisticated Algorithmic Strategies Chapter 5

[132]

Creating a trading strategy that adjusts for
trading instrument volatility
An intuitive way to think about price volatility is investor confidence in the specific
instrument, that is, how willing the investors are to invest money into the specific
instrument and how long they are willing to hold on to a position in that instrument. As
price volatility goes up, because prices make bigger swings at faster paces, investor
confidence drops. Conversely, as price volatility goes down, investors are more willing to
have bigger positions and hold those positions for longer periods of time. Volatility in a few
asset classes often spills over into other asset classes, thus slowly spreading volatility over
to all economic fields, housing costs, consumer costs, and so on. Obviously, sophisticated
strategies need to dynamically adjust to changing volatility in trading instruments by
following a similar pattern of being more cautious with respect to the positions they take,
how long positions are held, and what the profit/loss expectations are.

In Chapter 2, Deciphering the Markets with Technical Analysis, we saw a lot of trading signals;
in Chapter 3, Predicting the Markets with Basic Machine Learning, we applied machine
learning algorithms to those trading signals; and in Chapter 4, Classical Trading Strategies
Driven by Human Intuition, we explored basic trading strategies. Most of those approaches
did not directly consider volatility changes in the underlying trading instrument, or adjust
or account for them. In this section, we will discuss the impact of volatility changes in
trading instruments and how to deal with that to improve profitability and reduce risk
exposure.

Adjusting for trading instrument volatility in
technical indicators
In Chapter 2, Deciphering the Markets with Technical Analysis, we looked at generating
trading signals with predetermined parameters. What we mean by that is we decided
beforehand to use, say, 20 days moving average, or the number of time periods to use, or
the smoothing constants to use, and these remained constant throughout the entire period
of our analysis. These signals have the benefit of being simple, but suffer from the
disadvantage of performing differently as the volatility of the trading instrument changed
over the course of time.

Sophisticated Algorithmic Strategies Chapter 5

[133]

Then we also looked at signals such as Bollinger Bands and standard deviation, which
adjusted for trading instrument volatility, that is, during non-volatile periods, the lower
standard deviation in price movements would make the signals more aggressive to
entering positions and less aggressive when closing positions. Conversely, during volatile
periods, the higher standard deviation in price movements makes the signals less
aggressive to entering positions. This is because the bands that depend on standard
deviation widen out from the moving average, which in itself has become more volatile.
Thus, these signals implicitly had some aspects of adjusting for trading instrument
volatility baked right into them.

In general, it is possible to take any of the technical indicators we have seen so far and
combine a standard deviation signal with it to have a more sophisticated form of the basic
technical indicator that has dynamic values for number of days, or number of time periods
or smoothing factors. The parameters become dynamic by depending on the standard
deviation as a volatility measure. Thus, moving averages can have a smaller history or
number of time periods when volatility is high to capture more observations, and a larger
history or number of time periods when volatility is low to capture fewer observations.
Similarly, smoothing factors can be made higher or lower in magnitude depending on
volatility. In essence, that controls how much weight is assigned to newer observations as
compared to older ones. We won't go into any more detail here, but it is easy to apply these
concepts to technical indicators once the basic idea of applying volatility measures to
simple indicators to form complex indicators is clear.

Adjusting for trading instrument volatility in
trading strategies
We can apply the same concepts of adjusting for volatility measures to trading strategies.
Momentum or trend-following strategies can use changing volatility to dynamically change
the time period parameters used in the moving averages, or change the thresholds for how
many up/down days to count as an entry signal. Another area of improvement would be
using changing volatility to dynamically adjust thresholds on when to enter a position
when a trend is detected, and dynamically adjust thresholds on when to exit a position
when trend reversal is detected.

Sophisticated Algorithmic Strategies Chapter 5

[134]

For mean reversion based strategies, applying volatility measures is pretty similar. In this
case, we can use dynamically changing time periods for moving averages, and dynamically
changing thresholds for entering positions when overbuying and overselling is detected, or
dynamically changing thresholds for exiting positions when reversal to equilibrium prices
are detected. Let's explore, in the rest of this chapter, different ideas of adjusting for
volatility measures in trading strategies in greater detail and see the impact on the trading
strategy behavior.

Volatility adjusted mean reversion trading
strategies
We explored mean reversion trading strategies in great detail in Chapter 4, Classical
Trading Strategies Driven by Human Intuition. For the purposes of this chapter, we will first
create a very simple variant of a mean reversion strategy and then show how one would
apply volatility adjustment to the strategy to optimize and stabilize its risk-adjusted
returns.

Mean reversion strategy using the absolute price
oscillator trading signal
Let's explain and implement a mean reversion strategy that relies on the Absolute Price
Oscillator (APO) trading signal indicator we explored in Chapter 2, Deciphering the Markets
with Technical Analysis. It will use a static constant of 10 days for the Fast EMA and a static
constant of 40 days for the Slow EMA. It will perform buy trades when the APO signal
value drops below -10 and perform sell trades when the APO signal value goes above +10.
In addition, it will check that new trades are made at prices that are different from the last
trade price to prevent overtrading. Positions are closed when the APO signal value changes
sign, that is, close short positions when APO goes negative and close long positions when
APO goes positive.

Sophisticated Algorithmic Strategies Chapter 5

[135]

In addition, positions are also closed if currently open positions are profitable above a
certain amount, regardless of APO values. This is used to algorithmically lock profits and
initiate more positions instead of relying only on the trading signal value. Now, let's look at
the implementation in the next few sections:

We will fetch data the same way we have done in the past. Let's fetch 4 years of1.
GOOG data. This code will use the DataReader function from the
pandas_datareader package. This function will fetch the GOOG prices from
Yahoo Finance between 2014-01-2014 and 2018-01-01. If the .pkl file used to
store the data on the disk is not present, the GOOG_data.pkl file will be created.
By doing that, we ensure that we will use the file to fetch the GOOG data for future
use:

import pandas as pd
from pandas_datareader import data

Fetch daily data for 4 years
SYMBOL='GOOG'
start_date = '2014-01-01'
end_date = '2018-01-01'
SRC_DATA_FILENAME=SYMBOL + '_data.pkl'

try:
 data = pd.read_pickle(SRC_DATA_FILENAME)
except FileNotFoundError:
 data = data.DataReader(SYMBOL, 'yahoo', start_date, end_date)
 data.to_pickle(SRC_DATA_FILENAME)

Now we will define some constants and variables we will need to perform Fast2.
and Slow EMA calculations and APO trading signal:

Variables/constants for EMA Calculation:
NUM_PERIODS_FAST = 10 # Static time period parameter for the fast
EMA
K_FAST = 2 / (NUM_PERIODS_FAST + 1) # Static smoothing factor
parameter for fast EMA
ema_fast = 0
ema_fast_values = [] # we will hold fast EMA values for
visualization purposes

NUM_PERIODS_SLOW = 40 # Static time period parameter for slow EMA
K_SLOW = 2 / (NUM_PERIODS_SLOW + 1) # Static smoothing factor
parameter for slow EMA
ema_slow = 0
ema_slow_values = [] # we will hold slow EMA values for
visualization purposes

Sophisticated Algorithmic Strategies Chapter 5

[136]

apo_values = [] # track computed absolute price oscillator value
signals

We will also need variables that define/control strategy trading behavior and3.
position and PnL management:

Variables for Trading Strategy trade, position & pnl management:
orders = [] # Container for tracking buy/sell order, +1 for buy
order, -1 for sell order, 0 for no-action
positions = [] # Container for tracking positions, positive for
long positions, negative for short positions, 0 for flat/no
position
pnls = [] # Container for tracking total_pnls, this is the sum of
closed_pnl i.e. pnls already locked in and open_pnl i.e. pnls for
open-position marked to market price

last_buy_price = 0 # Price at which last buy trade was made, used
to prevent over-trading at/around the same price
last_sell_price = 0 # Price at which last sell trade was made, used
to prevent over-trading at/around the same price
position = 0 # Current position of the trading strategy
buy_sum_price_qty = 0 # Summation of products of buy_trade_price
and buy_trade_qty for every buy Trade made since last time being
flat
buy_sum_qty = 0 # Summation of buy_trade_qty for every buy Trade
made since last time being flat
sell_sum_price_qty = 0 # Summation of products of sell_trade_price
and sell_trade_qty for every sell Trade made since last time being
flat
sell_sum_qty = 0 # Summation of sell_trade_qty for every sell Trade
made since last time being flat
open_pnl = 0 # Open/Unrealized PnL marked to market
closed_pnl = 0 # Closed/Realized PnL so far

Finally, we clearly define the entry thresholds, the minimum price change since4.
last trade, the minimum profit to expect per trade, and the number of shares to
trade per trade:

Constants that define strategy behavior/thresholds
APO_VALUE_FOR_BUY_ENTRY = -10 # APO trading signal value below
which to enter buy-orders/long-position
APO_VALUE_FOR_SELL_ENTRY = 10 # APO trading signal value above
which to enter sell-orders/short-position
MIN_PRICE_MOVE_FROM_LAST_TRADE = 10 # Minimum price change since
last trade before considering trading again, this is to prevent
over-trading at/around same prices
MIN_PROFIT_TO_CLOSE = 10 # Minimum Open/Unrealized profit at which
to close positions and lock profits

Sophisticated Algorithmic Strategies Chapter 5

[137]

NUM_SHARES_PER_TRADE = 10 # Number of shares to buy/sell on every
trade

Now, let's look at the main section of the trading strategy, which has logic for the5.
following:

Computation/updates to Fast and Slow EMA and the APO trading signal
Reacting to trading signals to enter long or short positions
Reacting to trading signals, open positions, open PnLs, and market prices to
close long or short positions:

close=data['Close']
for close_price in close:
 # This section updates fast and slow EMA and computes APO trading
signal
 if (ema_fast == 0): # first observation
 ema_fast = close_price
 ema_slow = close_price
 else:
 ema_fast = (close_price - ema_fast) * K_FAST + ema_fast
 ema_slow = (close_price - ema_slow) * K_SLOW + ema_slow

 ema_fast_values.append(ema_fast)
 ema_slow_values.append(ema_slow)

 apo = ema_fast - ema_slow
 apo_values.append(apo)

The code will check for trading signals against trading parameters/thresholds6.
and positions, to trade. We will perform a sell trade at close_price if the
following conditions are met:

The APO trading signal value is above the Sell-Entry threshold and the
difference between the last trade price and current price is different enough.
We are long (positive position) and either the APO trading signal value is at
or above 0 or current position is profitable enough to lock profit:

 if ((apo > APO_VALUE_FOR_SELL_ENTRY and abs(close_price -
last_sell_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE) # APO above sell
entry threshold, we should sell
 or
 (position > 0 and (apo >= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE))): # long from negative APO and APO has gone
positive or position is profitable, sell to close position
 orders.append(-1) # mark the sell trade
 last_sell_price = close_price

Sophisticated Algorithmic Strategies Chapter 5

[138]

 position -= NUM_SHARES_PER_TRADE # reduce position by the size
of this trade
 sell_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) #
update vwap sell-price
 sell_sum_qty += NUM_SHARES_PER_TRADE
 print("Sell ", NUM_SHARES_PER_TRADE, " @ ", close_price,
"Position: ", position)

We will perform a buy trade at close_price if the following conditions are met:7.
the APO trading signal value is below the Buy-Entry threshold and the difference
between the last trade price and current price is different enough. We are short
(negative position) and either the APO trading signal value is at or below 0 or
current position is profitable enough to lock profit:

 elif ((apo < APO_VALUE_FOR_BUY_ENTRY and abs(close_price -
last_buy_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE) # APO below buy
entry threshold, we should buy
 or
 (position < 0 and (apo <= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE))): # short from positive APO and APO has gone
negative or position is profitable, buy to close position
 orders.append(+1) # mark the buy trade
 last_buy_price = close_price
 position += NUM_SHARES_PER_TRADE # increase position by the
size of this trade
 buy_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) #
update the vwap buy-price
 buy_sum_qty += NUM_SHARES_PER_TRADE
 print("Buy ", NUM_SHARES_PER_TRADE, " @ ", close_price,
"Position: ", position)
 else:
 # No trade since none of the conditions were met to buy or sell
 orders.append(0)
 positions.append(position)

The code of the trading strategy contains logic for position/PnL management. It8.
needs to update positions and compute open and closed PnLs when market
prices change and/or trades are made causing a change in positions:

This section updates Open/Unrealized & Closed/Realized positions
 open_pnl = 0
 if position > 0:
 if sell_sum_qty > 0: # long position and some sell trades have
been made against it, close that amount based on how much was sold
against this long position
 open_pnl = abs(sell_sum_qty) *
(sell_sum_price_qty/sell_sum_qty - buy_sum_price_qty/buy_sum_qty)

Sophisticated Algorithmic Strategies Chapter 5

[139]

 # mark the remaining position to market i.e. pnl would be what
it would be if we closed at current price
 open_pnl += abs(sell_sum_qty - position) * (close_price -
buy_sum_price_qty / buy_sum_qty)
 elif position < 0:
 if buy_sum_qty > 0: # short position and some buy trades have
been made against it, close that amount based on how much was
bought against this short position
 open_pnl = abs(buy_sum_qty) *
(sell_sum_price_qty/sell_sum_qty - buy_sum_price_qty/buy_sum_qty)
 # mark the remaining position to market i.e. pnl would be what
it would be if we closed at current price
 open_pnl += abs(buy_sum_qty - position) *
(sell_sum_price_qty/sell_sum_qty - close_price)
 else:
 # flat, so update closed_pnl and reset tracking variables for
positions & pnls
 closed_pnl += (sell_sum_price_qty - buy_sum_price_qty)
 buy_sum_price_qty = 0
 buy_sum_qty = 0
 sell_sum_price_qty = 0
 sell_sum_qty = 0
 last_buy_price = 0
 last_sell_price = 0

 print("OpenPnL: ", open_pnl, " ClosedPnL: ", closed_pnl)
 pnls.append(closed_pnl + open_pnl)

Now we look at some Python/Matplotlib code to see how to gather the relevant9.
results of the trading strategy such as market prices, Fast and Slow EMA values,
APO values, Buy and Sell trades, Positions and PnLs achieved by the strategy
over its lifetime and then plot them in a manner that gives us insight into the
strategy's behavior:

This section prepares the dataframe from the trading strategy
results and visualizes the results
data = data.assign(ClosePrice=pd.Series(close, index=data.index))
data = data.assign(Fast10DayEMA=pd.Series(ema_fast_values,
index=data.index))
data = data.assign(Slow40DayEMA=pd.Series(ema_slow_values,
index=data.index))
data = data.assign(APO=pd.Series(apo_values, index=data.index))
data = data.assign(Trades=pd.Series(orders, index=data.index))
data = data.assign(Position=pd.Series(positions, index=data.index))
data = data.assign(Pnl=pd.Series(pnls, index=data.index))

Sophisticated Algorithmic Strategies Chapter 5

[140]

Now we will add columns to the data frame with different series that we10.
computed in the previous sections, first the Market Price and then the fast
and slow EMA values. We will also have another plot for the APO trading signal
value. In both plots, we will overlay buy and sell trades so we can understand
when the strategy enters and exits positions:

import matplotlib.pyplot as plt

data['ClosePrice'].plot(color='blue', lw=3., legend=True)
data['Fast10DayEMA'].plot(color='y', lw=1., legend=True)
data['Slow40DayEMA'].plot(color='m', lw=1., legend=True)
plt.plot(data.loc[data.Trades == 1].index,
data.ClosePrice[data.Trades == 1], color='r', lw=0, marker='^',
markersize=7, label='buy')
plt.plot(data.loc[data.Trades == -1].index,
data.ClosePrice[data.Trades == -1], color='g', lw=0, marker='v',
markersize=7, label='sell')
plt.legend()
plt.show()

data['APO'].plot(color='k', lw=3., legend=True)
plt.plot(data.loc[data.Trades == 1].index, data.APO[data.Trades
== 1], color='r', lw=0, marker='^', markersize=7, label='buy')
plt.plot(data.loc[data.Trades == -1].index, data.APO[data.Trades
== -1], color='g', lw=0, marker='v', markersize=7, label='sell')
plt.axhline(y=0, lw=0.5, color='k')
for i in range(APO_VALUE_FOR_BUY_ENTRY, APO_VALUE_FOR_BUY_ENTRY*5,
APO_VALUE_FOR_BUY_ENTRY):
 plt.axhline(y=i, lw=0.5, color='r')
for i in range(APO_VALUE_FOR_SELL_ENTRY,
APO_VALUE_FOR_SELL_ENTRY*5, APO_VALUE_FOR_SELL_ENTRY):
 plt.axhline(y=i, lw=0.5, color='g')
plt.legend()
plt.show()

Let's take a look at what our trading behavior looks like, paying attention to the
EMA and APO values when the trades are made. When we look at the positions
and PnL plots, this will become completely clear:

Sophisticated Algorithmic Strategies Chapter 5

[141]

In the plot, we can see where the buy and sell trades were made as the price of the
Google stock change over the last 4 years, but now, let's look at what the APO
trading signal values where the buy trades were made and sell trades were made.
According to the design of these trading strategies, we expect sell trades when
APO values are positive and expect buy trades when APO values are negative:

Sophisticated Algorithmic Strategies Chapter 5

[142]

In the plot, we can see that a lot of sell trades are executed when APO trading
signal values are positive and a lot of buy trades are executed when APO trading
signal values are negative. We also observe that some buy trades are executed
when APO trading signal values are positive and some sell trades are executed
when APO trading signal values are negative. How do we explain that?

As we will see in the following code, those trades are the ones executed to close11.
profits. Let's observe the position and PnL evolution over the lifetime of this
strategy:

data['Position'].plot(color='k', lw=1., legend=True)
plt.plot(data.loc[data.Position == 0].index, data.Position[
data.Position == 0], color='k', lw=0, marker='.', label='flat')
plt.plot(data.loc[data.Position > 0].index, data.Position[
data.Position > 0], color='r', lw=0, marker='+', label='long')
plt.plot(data.loc[data.Position < 0].index, data.Position[
data.Position < 0], color='g', lw=0, marker='_', label='short')
plt.axhline(y=0, lw=0.5, color='k')
for i in range(NUM_SHARES_PER_TRADE, NUM_SHARES_PER_TRADE*25,
NUM_SHARES_PER_TRADE*5):
 plt.axhline(y=i, lw=0.5, color='r')
for i in range(-NUM_SHARES_PER_TRADE, -NUM_SHARES_PER_TRADE*25, -
NUM_SHARES_PER_TRADE*5):
 plt.axhline(y=i, lw=0.5, color='g')
plt.legend()
plt.show()

data['Pnl'].plot(color='k', lw=1., legend=True)
plt.plot(data.loc[data.Pnl > 0].index, data.Pnl[data.Pnl > 0],
color='g', lw=0, marker='.')
plt.plot(data.loc[data.Pnl < 0].index, data.Pnl[data.Pnl < 0],
color='r', lw=0, marker='.')
plt.legend()
plt.show()

The code will return the following output. Let's have a look at the two charts:

Sophisticated Algorithmic Strategies Chapter 5

[143]

From the position plot, we can see some large short positions around 2016-01, then again in
2017-07, and finally again in 2018-01. If we go back to the APO trading signal values, that is
when APO values went through large patches of positive values. Finally, let's look at how
the PnL evolves for this trading strategy over the course of the stock's life cycle:

Sophisticated Algorithmic Strategies Chapter 5

[144]

The basic mean reversion strategy makes money pretty consistently over the course of time,
with some volatility in returns during 2016-01 and 2017-07, where the strategy has large
positions, but finally ending around $15K, which is close to its maximum achieved PnL.

Mean reversion strategy that dynamically adjusts for
changing volatility
Now, let's apply the previously introduced concepts of using a volatility measure to adjust
the number of days used in Fast and Slow EMA and using a volatility-adjusted APO entry
signal. We will use the standard deviation (STDEV) indicator we explored in Chapter 2,
Deciphering the Markets with Technical Analysis, as a measure of volatility. Let's observe the
output of that indicator quickly to recap the Google dataset:

Sophisticated Algorithmic Strategies Chapter 5

[145]

From the output, it seems like volatility measure ranges from somewhere between $8 over
20 days to $40 over 20 days, with $15 over 20 days being the average. So we will use a
volatility factor that ranges from 0 to 1, by designing it to be ,
where values closer to 0 indicate very low volatility, values around 1 indicate normal
volatility, and values above 1 indicate above-normal volatility. The way in which we
incorporate STDEV into our strategy is through the following changes:

Instead of having static K_FAST and K_SLOW smoothing factors for the fast and
slow EMA, we will instead make them additionally a function of volatility and
use K_FAST * stdev_factor and K_SLOW * stdev_factor, to make them
more reactive to newest observations during periods of higher than normal
volatility, which makes intuitive sense.
Instead of using static APO_VALUE_FOR_BUY_ENTRY
and APO_VALUE_FOR_SELL_ENTRY thresholds for entering positions based on
the primary trading signal APO, we will also incorporate volatility to have
dynamic thresholds APO_VALUE_FOR_BUY_ENTRY * stdev_factor and
APO_VALUE_FOR_SELL_ENTRY * stdev_factor. This makes us less aggressive
in entering positions during periods of higher volatility, by increasing the
threshold for entry by a factor of volatility, which also makes intuitive sense
based on what we discussed in the previous section.
Finally, we will incorporate volatility in one last threshold and that is by having a
dynamic expected profit threshold to lock in profit in a position. In this case,
instead of using the static MIN_PROFIT_TO_CLOSE threshold, we will use a
dynamic MIN_PROFIT_TO_CLOSE / stdev_factor. Here, the idea is to be
more aggressive in exciting positions during periods of increased volatility,
because as we discussed before, during periods of higher than normal volatility,
it is riskier to hold on to positions for longer periods of time.

Let's look at the modifications needed to the basic mean reversion strategy to achieve this.
First, we need some code to track and update the volatility measure (STDEV):

import statistics as stats
import math as math

Constants/variables that are used to compute standard deviation as a
volatility measure
SMA_NUM_PERIODS = 20 # look back period
price_history = [] # history of prices

Sophisticated Algorithmic Strategies Chapter 5

[146]

Then the main strategy loop simply becomes this, while the position and PnL management
section of the strategy remains the same:

close=data['Close']
for close_price in close:
 price_history.append(close_price)
 if len(price_history) > SMA_NUM_PERIODS: # we track at most 'time_period'
number of prices
 del (price_history[0])

 sma = stats.mean(price_history)
 variance = 0 # variance is square of standard deviation
 for hist_price in price_history:
 variance = variance + ((hist_price - sma) ** 2)

 stdev = math.sqrt(variance / len(price_history))
 stdev_factor = stdev/15
 if stdev_factor == 0:
 stdev_factor = 1

 # This section updates fast and slow EMA and computes APO trading signal
 if (ema_fast == 0): # first observation
 ema_fast = close_price
 ema_slow = close_price
 else:
 ema_fast = (close_price - ema_fast) * K_FAST*stdev_factor + ema_fast
 ema_slow = (close_price - ema_slow) * K_SLOW*stdev_factor + ema_slow

 ema_fast_values.append(ema_fast)
 ema_slow_values.append(ema_slow)

 apo = ema_fast - ema_slow
 apo_values.append(apo)

And as we said, the use of the trading signal to manage positions has the same trading logic
as before. First, let's look at the sell trade logic:

 # We will perform a sell trade at close_price if the following conditions
are met:
 # 1. The APO trading signal value is above Sell-Entry threshold and the
difference between last trade-price and current-price is different enough.
2. We are long(positive position) and either APO trading signal value
is at or above 0 or current position is profitable enough to lock profit.
 if ((apo > APO_VALUE_FOR_SELL_ENTRY*stdev_factor and abs(close_price -
last_sell_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE*stdev_factor) # APO above
sell entry threshold, we should sell
 or
 (position > 0 and (apo >= 0 or open_pnl >

Sophisticated Algorithmic Strategies Chapter 5

[147]

MIN_PROFIT_TO_CLOSE/stdev_factor))): # long from negative APO and APO has
gone positive or position is profitable, sell to close position
 orders.append(-1) # mark the sell trade
 last_sell_price = close_price
 position -= NUM_SHARES_PER_TRADE # reduce position by the size of this
trade
 sell_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) # update vwap
sell-price
 sell_sum_qty += NUM_SHARES_PER_TRADE
 print("Sell ", NUM_SHARES_PER_TRADE, " @ ", close_price, "Position: ",
position)

Now, let's look at similar logic for buy trades:

 # We will perform a buy trade at close_price if the following conditions
are met:
 # 1. The APO trading signal value is below Buy-Entry threshold and the
difference between last trade-price and current-price is different enough.
 # 2. We are short(negative position) and either APO trading signal
value is at or below 0 or current position is profitable enough to lock
profit.
 elif ((apo < APO_VALUE_FOR_BUY_ENTRY*stdev_factor and abs(close_price -
last_buy_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE*stdev_factor) # APO below
buy entry threshold, we should buy
 or
 (position < 0 and (apo <= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE/stdev_factor))): # short from positive APO and APO has
gone negative or position is profitable, buy to close position
 orders.append(+1) # mark the buy trade
 last_buy_price = close_price
 position += NUM_SHARES_PER_TRADE # increase position by the size of
this trade
 buy_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) # update the
vwap buy-price
 buy_sum_qty += NUM_SHARES_PER_TRADE
 print("Buy ", NUM_SHARES_PER_TRADE, " @ ", close_price, "Position: ",
position)
 else:
 # No trade since none of the conditions were met to buy or sell
 orders.append(0)

Sophisticated Algorithmic Strategies Chapter 5

[148]

Let's compare PnLs from a static constant thresholds mean reversion strategy and a
volatility-adjusted mean reversion strategy to see whether we improved performance or
not:

In this case, adjusting the trading strategy for volatility increases the strategy performance
by 200%!

Trend-following strategy using absolute price oscillator
trading signal
Similar to the mean reversion strategy we explored, we can build a trend-following strategy
that uses the APO trading signal. The only difference here is that we enter long positions
when the APO is above a certain value, expecting price moves to continue in that direction,
and we enter short positions when the APO is below a certain value, expecting price moves
to continue going down.

Sophisticated Algorithmic Strategies Chapter 5

[149]

In effect, this is the exact opposite trading strategy with some differences in position
management. One might expect this trading strategy to be exactly opposite in performance
but, as we will see, that is not the case, that is, both trend-following and mean reversion
strategies can be profitable in the same market conditions:

First, we define the APO values we will use to enter long/short positions. In this1.
case, the buy entry APO threshold is positive and the sell entry APO threshold is
negative:

Constants that define strategy behavior/thresholds
APO_VALUE_FOR_BUY_ENTRY = 10 # APO trading signal value above which
to enter buy-orders/long-position
APO_VALUE_FOR_SELL_ENTRY = -10 # APO trading signal value below
which to enter sell-orders/short-position

Next, let's look at the core trading logic that enters and exits positions.2.

First, look at the signal and position management code that leads to sell trades:

 # This section checks trading signal against trading
parameters/thresholds and positions, to trade.
We will perform a sell trade at close_price if the following
conditions are met:
 # 1. The APO trading signal value is below Sell-Entry threshold
and the difference between last trade-price and current-price is
different enough.
 # 2. We are long(positive position) and either APO trading
signal value is at or below 0 or current position is profitable
enough to lock profit.
 if ((apo < APO_VALUE_FOR_SELL_ENTRY and abs(close_price -
last_sell_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE) # APO above sell
entry threshold, we should sell
 or
 (position > 0 and (apo <= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE))): # long from positive APO and APO has gone
negative or position is profitable, sell to close position
 orders.append(-1) # mark the sell trade
 last_sell_price = close_price
 position -= NUM_SHARES_PER_TRADE # reduce position by the size
of this trade
 sell_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) #
update vwap sell-price
 sell_sum_qty += NUM_SHARES_PER_TRADE
 print("Sell ", NUM_SHARES_PER_TRADE, " @ ", close_price,
"Position: ", position)

Sophisticated Algorithmic Strategies Chapter 5

[150]

Now, let's look at the signal and position management code that leads to buy trades:

 # We will perform a buy trade at close_price if the following conditions
are met:
 # 1. The APO trading signal value is above Buy-Entry threshold and the
difference between last trade-price and current-price is different enough.
 # 2. We are short(negative position) and either APO trading signal
value is at or above 0 or current position is profitable enough to lock
profit.
 elif ((apo > APO_VALUE_FOR_BUY_ENTRY and abs(close_price -
last_buy_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE) # APO above buy entry
threshold, we should buy
 or
 (position < 0 and (apo >= 0 or open_pnl > MIN_PROFIT_TO_CLOSE))): #
short from negative APO and APO has gone positive or position is
profitable, buy to close position
 orders.append(+1) # mark the buy trade
 last_buy_price = close_price
 position += NUM_SHARES_PER_TRADE # increase position by the size of
this trade
 buy_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) # update the
vwap buy-price
 buy_sum_qty += NUM_SHARES_PER_TRADE
 print("Buy ", NUM_SHARES_PER_TRADE, " @ ", close_price, "Position: ",
position)
 else:
 # No trade since none of the conditions were met to buy or sell
 orders.append(0)

The code to generate the visualization plots remains the same, so we've skipped it here.
Let's look at trend-following trading strategy performance:

Sophisticated Algorithmic Strategies Chapter 5

[151]

The plot shows at what prices the buy and sell trades are made throughout the lifetime of
the trading strategy applied to Google stock data. The trading strategy behavior will make
more sense when we inspect the APO signal values to go along with the actual trade prices.
Let's look at that in the next plot:

Sophisticated Algorithmic Strategies Chapter 5

[152]

By the definition of a trend-following strategy using the APO trading signal values,
intuitively we expect buy trades when APO signal values are positive and sell trades when
APO signal values are negative. There are also some buy trades when APO signal values
are negative and some sell trades when APO signal values are positive, which might seem
counterintuitive, but these are trades made to close out profitable positions, similar to the
mean reversion strategy. Now, let's look at the evolution of positions through the course of
this trading strategy:

Here, compared to the mean reversion trading strategy, there are more long positions than
short positions, and the positions are usually small and closed quickly and a new position
(likely long) is initiated shortly after. This observation is consistent with the fact that this is
a trend-following strategy applied to a strongly upward-trending trading instrument such
as the Google stock. Since Google stocks have been steadily trending upward over the
course of this trading strategy, it makes sense that most of the positions are long and also
makes sense that most of the long positions end up being profitable and are flattened
shortly after being initiated. Finally, let's observe the evolution of PnL for this trading
strategy:

Sophisticated Algorithmic Strategies Chapter 5

[153]

So, for this case, the trend-following strategy makes a third of the money that the mean
reversion strategy makes; however, the trend-following strategy also makes money for the
same market conditions by entering and exiting positions at different price points.

Trend-following strategy that dynamically adjusts for changing volatility
Let's use STDEV as a measure of volatility and adjust the trend-following strategy to adapt
to changing market volatility. We will use an identical approach to the one we used when
adjusting the mean reversion trading strategy for market volatility.

The main trading logic for the trend-following strategy adjusted for market volatility looks
like the following. Let's start with the trading logic that controls sell trades first:

 # This section checks trading signal against trading
parameters/thresholds and positions, to trade.
 # We will perform a sell trade at close_price if the following conditions
are met:
 # 1. The APO trading signal value is below Sell-Entry threshold and the
difference between last trade-price and current-price is different enough.
 # 2. We are long(positive position) and either APO trading signal value
is at or below 0 or current position is profitable enough to lock profit.
 if ((apo < APO_VALUE_FOR_SELL_ENTRY/stdev_factor and abs(close_price -
last_sell_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE*stdev_factor) # APO below
sell entry threshold, we should sell
 or
 (position > 0 and (apo <= 0 or open_pnl >

Sophisticated Algorithmic Strategies Chapter 5

[154]

MIN_PROFIT_TO_CLOSE/stdev_factor))): # long from positive APO and APO has
gone negative or position is profitable, sell to close position
 orders.append(-1) # mark the sell trade
 last_sell_price = close_price
 position -= NUM_SHARES_PER_TRADE # reduce position by the size of this
trade
 sell_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) # update vwap
sell-price
 sell_sum_qty += NUM_SHARES_PER_TRADE
 print("Sell ", NUM_SHARES_PER_TRADE, " @ ", close_price, "Position: ",
position)

Now, let's look at the trading logic code that handles buy trades:

 # We will perform a buy trade at close_price if the following conditions
are met:
 # 1. The APO trading signal value is above Buy-Entry threshold and the
difference between last trade-price and current-price is different enough.
 # 2. We are short(negative position) and either APO trading signal
value is at or above 0 or current position is profitable enough to lock
profit.
 elif ((apo > APO_VALUE_FOR_BUY_ENTRY/stdev_factor and abs(close_price -
last_buy_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE*stdev_factor) # APO above
buy entry threshold, we should buy
 or
 (position < 0 and (apo >= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE/stdev_factor))): # short from negative APO and APO has
gone positive or position is profitable, buy to close position
 orders.append(+1) # mark the buy trade
 last_buy_price = close_price
 position += NUM_SHARES_PER_TRADE # increase position by the size of
this trade
 buy_sum_price_qty += (close_price*NUM_SHARES_PER_TRADE) # update the
vwap buy-price
 buy_sum_qty += NUM_SHARES_PER_TRADE
 print("Buy ", NUM_SHARES_PER_TRADE, " @ ", close_price, "Position: ",
position)
 else:
 # No trade since none of the conditions were met to buy or sell
 orders.append(0)

Sophisticated Algorithmic Strategies Chapter 5

[155]

Finally, let's compare trend-following strategy performance with and without accounting
for volatility changes:

So, for trend-following strategies, having dynamic trading thresholds degrades strategy
performance. We can explore tweaking the application of the volatility measure to
see whether there are variants that actually improve performance compared to static trend-
following.

Creating a trading strategy for economic
events
In this section, we will explore a new class of trading strategies that is different from what
we've seen before. Instead of using technical indicators, we can research economic releases
and use various economic releases to estimate/predict the impact on the trading
instruments and trade them accordingly. Let's first take a look at what economic releases
are and how instrument pricing is influenced by releases.

Sophisticated Algorithmic Strategies Chapter 5

[156]

Economic releases
Economic indicators are a measure of economic activity for a certain country or region or
asset classes. These indicators are measured, researched, and released by different entities.
Some of these entities are government agencies and some are private research firms. Most
of these are released on a schedule, known as an economic calendar. In addition, there is
plenty of data available for past releases, expected releases, and actual releases. Each
economic indicator captures different economic activity measures: some might affect
housing prices, some show employment information, some affect grain, corn, and wheat
instruments, others affect precious metals and energy commodities. For example, possibly
the most well-known economic indicator, Nonfarm Payrolls in America, is a monthly
indicator released by the US Department of Labor (https://www.bls.gov/ces/) that
represents the number of new jobs created in all non-agricultural industries. This economic
release has a huge impact on almost all asset classes. Another example is the EIA Crude Oil
Stockpiles report, which is a weekly indicator released by the Energy Information
Administration that measures change in the number of barrels of crude oil available. This is
a high-impact release for energy products, oil, gas, and so on, but does not usually directly
affect things such as stocks, and interest rates.

Now that we have an intuitive idea of what economic indicators are and what economic
releases capture and signify, let's look at a short list of important US economic releases. We
will not be covering the details of these releases here, but we encourage the reader to
explore the economic indicators mentioned here as well as others in greater detail:

ADP Employment, API Crude, Balance of Trade, Baker Hughes Oil Rig Count, Business
Optimism, Business Inventories, Case-Shiller, CB Consumer Confidence, CB Leading Index,
Challenger Job Cuts, Chicago PMI, Construction Spending, Consumer Credit, Consumer
Inflation Expectations, Durable Goods, EIA Crude, EIA Natural Gas, Empire State
Manufacturing Index, Employment Cost Index, Factory Orders, Fed Beige Book, Fed
Interest Rate Decision, Fed Press Conference, Fed Manufacturing Index, Fed National
Activity, FOMC Economic Projections, FOMC Minutes, GDP, Home Sales, Housing Starts,
House Price Index, Import Prices, Industrial Production, Inflation Rate, ISM
Manufacturing, ISM Non-Manufacturing, ISM New York Index, Jobless Claims, JOLTs,
Markit Composite PMI, Markit Manufacturing PMI, Michigan Consumer Sentiment,
Mortgage Applications, NAHB Housing Market Index, Nonfarm Payrolls, Nonfarm
Productivity, PCE, PPI, Personal Spending, Redbook, Retail Sales, Total Vehicle Sales,
WASDE & Wholesale Inventories

More information about these releases is available at https://tradingeconomics.com/.

https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://www.bls.gov/ces/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/

Sophisticated Algorithmic Strategies Chapter 5

[157]

Economic release format
There are plenty of free and paid economic release calendars available, which can be
scraped for historical release data or accessed through a proprietary API. Since the focus of
this section is utilizing economic release data in trading, we will skip the details of
accessing historical data, but it is quite straightforward. Most common economic release
calendars look like this:

Calendar CST Economic indicator Actual Previous Consensus Forecast
2019-05-03 07:30 AM Non Farm Payrolls Apr 263K 189K 185K 178K
2019-06-07 07:30 AM Non Farm Payrolls May 75K 224K 185K 190K
2019-07-05 07:30 AM Non Farm Payrolls Jun 224K 72K 160K 171K
2019-08-02 07:30 AM Non Farm Payrolls Jul 164K 193K 164K 160K

As we discussed earlier, the date and time of releases are set well in advance. Most
calendars also provide the previous year's release, or sometimes the previous month's
release. The Consensus estimate is what multiple economists or firms expect the release to
be; this is generally treated as the expected value of the release, and any large misses from
this expectation will cause large price volatility. A lot of calendars, in addition, provide a
Forecast field, which is the calendar provider's expected value for that economic release. At
the time of writing, https://tradingeconomics.com/, https://www.forexfactory.com/,
and https://www.fxstreet.com/ are some of the many free and paid economic calendar
providers.

Electronic economic release services
One last concept we need to understand before we can look into the analysis of economic
releases and price movement is how to deliver these economic releases electronic to trading
strategies right to the trading servers. There are a lot of service providers that provide
economic releases directly to trading servers electronically via low-latency direct lines.
Most providers cover most of the major economic indicators and usually deliver releases to
the trading strategies in machine-parsable feeds. These releases can reach the trading
servers anywhere from a few microseconds up to a few milliseconds after the official
release. Nowadays, it's quite common for a lot of algorithmic trading market participants to
make use of such electronic economic release providers as alternative data providers to
improve trading performance.

https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://tradingeconomics.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.forexfactory.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/
https://www.fxstreet.com/

Sophisticated Algorithmic Strategies Chapter 5

[158]

Economic releases in trading
Now that we have a good grasp of what economic indicators are, how the economic
releases are scheduled, and how they can be delivered electronically directly to trading
servers, let's dive in and look at some possible edge trading strategies gain from economic
indicator releases. There are a couple of different ways to use economic indicator releases in
algorithmic trading, but we will explore the most common and most intuitive approach.
Given the history of expected economic indicator values and actual releases similar to the
format we saw before, it is possible to correlate the difference between expected and actual
values with price movement that follows. Generally, there are two approaches. One
capitalizes on price moves that are less than expected for a big miss in expected and actual
economic indicator release, that is, the price should have moved a certain amount based on
historical research, but moved much less. This strategy takes a position with the view that
prices will move further and tries to capture a profit if it does, similar to trend-following
trading strategies in some sense.

The other approach is the opposite one, which tries to detect overreactions in price
movements and make the opposite bet, that is, prices will go back to previous price levels,
similar to a mean reversion strategy in some sense. In practice, this approach is often
improved by using classification methods we explored in Chapter 3, Predicting the Markets
with Basic Machine Learning. Classification methods allow us to improve the process of
combining multiple economic releases that occur at the same time in addition to having
multiple possible value-boundaries for each release, to provide greater granularity and
thresholds. For the purposes of this example, we will not dive into the complexity of
applying classification methods to this economic release trading strategy.

Let's look at a couple of Non Farm Payroll releases and observe the impact on the S&P
futures. Because this requires tick data, which is not freely available, we will skip the actual
analysis code, but it should be easy to conceptualize this analysis and understand how to
apply it to different datasets:

Sophisticated Algorithmic Strategies Chapter 5

[159]

Let's quickly put together a scatter plot to easily visualize how price moves correspond to
misses in economic indicator releases:

Sophisticated Algorithmic Strategies Chapter 5

[160]

As you can observe, positive misses (actual indicator value higher than consensus indicator
values) cause prices to move higher. Conversely, negative misses (actual indicator value
lower than consensus indicator values) cause prices to move lower. In general, higher
NonFarm Payroll job additions are considered to indicate a healthy economy and thus
cause the S&P, which tracks major stocks, to increase in value. Another interesting thing to
observe is that the larger the miss, in general, the bigger the price move. So with this simple
analysis, we have expected reaction for two unknowns: the direction of a price move due to
a miss and the magnitude of the price move as a function of the magnitude of the miss.
Now, let's look at how to use this information.

As we discussed before, one of the approaches is to use the miss value and the research to
use a trend-following approach and buy on a large positive miss and sell on a large
negative miss, with the expectation that prices will move up or down a certain amount. The
strategy then closes the long or short position when the expected price move has
materialized. This strategy works when the price move and magnitude are in line with the
research. Another important consideration is the latency between the release and when the
prices begin to move. The strategy needs to be fast enough to initiate a position before the
information is available to all other participants and price move has finished.

The other approach is to use the miss value and the research to detect overreaction in price
moves and then take the opposite position. In this instance, for a positive miss, if the price
decreases, we can have the view that this move is a mistake or an overreaction and initiate a
long position with the expectation that prices will go up as our research indicates it should.
The other overreaction is if prices move up due to a positive miss as our research indicated
but the magnitude of the move is significantly larger than our research indicates. In that
case, the strategy waits till prices have moved significantly outside of expectation and then
initiates a short position, expecting the overreaction to die down and prices to revert a bit,
allowing us to capture a profit. The benefit of the mean reversion trading approach to
economic releases over the trend-following approach is that the latter is less sensitive to
latency between economic indicator release and time window within which the trading
strategy must initiate a position.

Sophisticated Algorithmic Strategies Chapter 5

[161]

Understanding and implementing basic
statistical arbitrage trading strategies
Statistical arbitrage trading strategies (StatArb) first became popular in the 1980s,
delivering many firms double-digit returns. It is a class of strategies that tries to capture
relationships between short-term price movements in many correlated products. Then it
uses relationships that have been found to be statistically significant in the past research to
make predictions in the instrument being traded based on price movements in a large
group of correlated products.

Basics of StatArb
Statistical arbitrage or StatArb is in some way similar to pairs trading that takes offsetting
positions in co-linearly related products that we explored in Chapter 4, Classical Trading
Strategies Driven by Human Intuition. However, the difference here is that StatArb trading
strategies often have baskets or portfolios of hundreds of trading instrument, whether they
are futures instruments, equities, options, or even currencies. Also, StatArb strategies have
a mixture of mean reversion and trend-following strategies. One possibility is that price
deviation in the instrument being traded is less than the expected price deviation based on
the expected relationship with the price deviations for the portfolio of instruments. In that
case, StatArb strategies resemble a trend-following strategy by positioning themselves on
the expectation that the trading instrument's price will catch up to the portfolio.

The other case is that price deviation in the instrument being traded is more than the
expected price deviation based on the expected relationship with the price deviations for
the portfolio of instruments. Here, StatArb strategies resemble a mean reversion strategy by
positioning themselves on the expectation that the trading instrument's price will revert
back to the portfolio. Most widespread applications of StatArb trading strategies lean more
toward mean reversion strategies. StatArb strategies can be considered HFT but can also be
medium frequency if the strategy positions last longer than a few milliseconds or a few
seconds.

Sophisticated Algorithmic Strategies Chapter 5

[162]

Lead-lag in StatArb
Another important consideration is that this strategy implicitly expects the portfolio to lead
and the trading instrument is lagging in terms of reaction by market participants. When
this is not true, for example, when the trading instrument we are trying to trade is actually
the one leading price moves across the portfolio, then this strategy doesn't perform well,
because instead of the trading instrument price catching up to the portfolio, now the
portfolio prices catch up to the trading instrument. This is the concept of lead-lag in
StatArb; to be profitable, we need to find trading instruments that are mostly lagging and
build a portfolio of instruments that are mostly leading.

A lot of the time, the way this manifests itself is that during some market hours, some
instruments lead others and during other market hours, that relationship is reversed. For
example, intuitively one can understand that during Asia market hours, trading
instruments traded in Asian electronic exchanges such as Singapore, India, Hong Kong,
and Japan lead price moves in global assets. During European market hours, trading
instruments traded in Germany, London, and other European countries lead most price
moves across global assets. Finally, during American market hours, trading instruments in
America lead price moves. So the ideal approach is to construct portfolios and establish
relationships between lead and lag instruments differently in different trading sessions.

Adjusting portfolio composition and
relationships
Another important factor to build StatArb strategies that perform well consistently is
understanding and building systems to adapt to changing portfolio compositions and
relationships between different trading instruments. The drawback of having the StatArb
trading strategy depend primarily on the short-term relationships between large number of
trading instruments is that it is hard to understand and adapt to changing relationships
between price moves in all the different instruments that constitute a portfolio. The
portfolio weights themselves change over time. Principal component analysis, a statistical
tool from dimensionality reduction techniques, can be used to construct, adapt, and
monitor portfolio weights and significance that change over time.

Sophisticated Algorithmic Strategies Chapter 5

[163]

The other important issue is dealing with relationships between the trading instrument and
the leading instruments and also between the trading instrument and the portfolio of
leading instruments. Sometimes, localized volatility and country-specific economic events
cause the fundamental relationship needed to make StatArb profitable break down. For
example, political or economic conditions in Brazil can start affecting the Brazilian real
currency price moves to no longer be driven by major currencies around the world.
Similarly, during periods of localized economic distress in Britain, say for Brexit, or in
America, say due to trade wars against China, these portfolio relationships as well as the
lead-lag relationships break down from historical expectations and kill the profitability of
StatArb trading strategies. Trying to deal with such conditions can require a lot more
statistical edges and sophistication beyond just StatArb techniques.

Infrastructure expenses in StatArb
The last big consideration in StatArb trading is the fact that to be successful in StatArb
trading strategies as a business, it is very important to be connected to a lot of electronic
trading exchanges to get market data across different exchanges across different
countries/continents/markets. Being co-located in so many trading exchanges is extremely
expensive from an infrastructure cost perspective. The other problem is that one needs to
not only be connected to as many exchanges as possible, but a lot of software development
investment needs to make to receive, decode, and store market data and also to send
orders, since a lot of these exchanges likely use different market data feed and order
gateway communication formats.

The final big consideration is that since StatArb strategies need to receive market data from
all exchanges, now every venue needs a physical data link from every other venue, which
gets exponentially expensive for every exchange added. Then, if one considers using the
much more expensive microwave services to deliver data faster to the trading boxes, that
makes it even worse. So to summarize, StatArb trading strategies can be significantly more
expensive than some of the other trading strategies from an infrastructure perspective
when it comes to running an algorithmic trading business.

Sophisticated Algorithmic Strategies Chapter 5

[164]

StatArb trading strategy in Python
Now that we have a good understanding of the principles involved in StatArb trading
strategies and some practical considerations in building and operating an algorithmic
trading business utilizing StatArb trading strategies, let's look at a realistic trading strategy
implementation and understand its behavior and performance. In practice, modern
algorithmic trading businesses that operate with high frequency usually use a low-level
programming language such as C++.

StatArb data set
Let's first get the data set we will need to implement a StatArb trading strategy. For this
section, we will use the following major currencies across the world:

Austrian Dollar versus American Dollar (AUD/USD)
British Pound versus American Dollar (GBP/USD)
Canadian Dollar versus American Dollar (CAD/USD)
Swiss Franc versus American Dollar (CHF/USD)
Euro versus American Dollar (EUR/USD)
Japanese Yen versus American Dollar (JPY/USD)
New Zealand Kiwi versus American Dollar (NZD/USD)

And for this implementation of the StatArb trading strategy, we will try to trade CAD/USD
using its relationship with the other currency pairs:

Let's fetch 4 years' worth of data for these currency pairs and set up our data1.
frames:

import pandas as pd
from pandas_datareader import data

Fetch daily data for 4 years, for 7 major currency pairs
TRADING_INSTRUMENT = 'CADUSD=X'
SYMBOLS = ['AUDUSD=X', 'GBPUSD=X', 'CADUSD=X', 'CHFUSD=X',
'EURUSD=X', 'JPYUSD=X', 'NZDUSD=X']
START_DATE = '2014-01-01'
END_DATE = '2018-01-01'

DataSeries for each currency
symbols_data = {}
for symbol in SYMBOLS:
 SRC_DATA_FILENAME = symbol + '_data.pkl'

Sophisticated Algorithmic Strategies Chapter 5

[165]

 try:
 data = pd.read_pickle(SRC_DATA_FILENAME)
 except FileNotFoundError:
 data = data.DataReader(symbol, 'yahoo', START_DATE, END_DATE)
 data.to_pickle(SRC_DATA_FILENAME)

 symbols_data[symbol] = data

Let's quickly visualize each currency pair's prices over the period of our data set2.
and see what we observe. We scale the JPY/USD pair by 100.0 purely for
visualization scaling purposes:

Visualize prices for currency to inspect relationship between
them
import matplotlib.pyplot as plt
import numpy as np
from itertools import cycle

cycol = cycle('bgrcmky')

price_data = pd.DataFrame()
for symbol in SYMBOLS:
 multiplier = 1.0
 if symbol == 'JPYUSD=X':
 multiplier = 100.0

 label = symbol + ' ClosePrice'
 price_data =
price_data.assign(label=pd.Series(symbols_data[symbol]['Close'] *
multiplier, index=symbols_data[symbol].index))
 ax = price_data['label'].plot(color=next(cycol), lw=2.,
label=label)
plt.xlabel('Date', fontsize=18)
plt.ylabel('Scaled Price', fontsize=18)
plt.legend(prop={'size': 18})
plt.show()

Sophisticated Algorithmic Strategies Chapter 5

[166]

The code will return the following output. Let's have a look at the plot:

As one would expect and can observe, these currency pairs' price moves are all similar to
each other in varying degrees. CAD/USD, AUD/USD, and NZD/USD seem to be most
correlated, with CHF/USD and JPY/USD being least correlated to CAD/USD. For the
purposes of this strategy, we will use all currencies in the trading model because these
relationships are obviously not known ahead of time.

Defining StatArb signal parameters
Now, let's define and quantify some parameters we will need to define moving averages,
price deviation from moving averages, history of price deviations, and variables to
compute and track correlations:

import statistics as stats

Constants/variables that are used to compute simple moving average and
price deviation from simple moving average
SMA_NUM_PERIODS = 20 # look back period
price_history = {} # history of prices

PRICE_DEV_NUM_PRICES = 200 # look back period of ClosePrice deviations from
SMA

Sophisticated Algorithmic Strategies Chapter 5

[167]

price_deviation_from_sma = {} # history of ClosePrice deviations from SMA

We will use this to iterate over all the days of data we have
num_days = len(symbols_data[TRADING_INSTRUMENT].index)
correlation_history = {} # history of correlations per currency pair
delta_projected_actual_history = {} # history of differences between
Projected ClosePrice deviation and actual ClosePrice deviation per currency
pair

final_delta_projected_history = [] # history of differences between final
Projected ClosePrice deviation for TRADING_INSTRUMENT and actual ClosePrice
deviation

Defining StatArb trading parameters
Now, before we get into the main strategy loop, let's define some final variables and
thresholds we will need to build our StatArb trading strategy:

Variables for Trading Strategy trade, position & pnl management:
orders = [] # Container for tracking buy/sell order, +1 for buy order, -1
for sell order, 0 for no-action
positions = [] # Container for tracking positions, positive for long
positions, negative for short positions, 0 for flat/no position
pnls = [] # Container for tracking total_pnls, this is the sum of
closed_pnl i.e. pnls already locked in and open_pnl i.e. pnls for open-
position marked to market price

last_buy_price = 0 # Price at which last buy trade was made, used to
prevent over-trading at/around the same price
last_sell_price = 0 # Price at which last sell trade was made, used to
prevent over-trading at/around the same price
position = 0 # Current position of the trading strategy
buy_sum_price_qty = 0 # Summation of products of buy_trade_price and
buy_trade_qty for every buy Trade made since last time being flat
buy_sum_qty = 0 # Summation of buy_trade_qty for every buy Trade made since
last time being flat
sell_sum_price_qty = 0 # Summation of products of sell_trade_price and
sell_trade_qty for every sell Trade made since last time being flat
sell_sum_qty = 0 # Summation of sell_trade_qty for every sell Trade made
since last time being flat
open_pnl = 0 # Open/Unrealized PnL marked to market
closed_pnl = 0 # Closed/Realized PnL so far

Constants that define strategy behavior/thresholds
StatArb_VALUE_FOR_BUY_ENTRY = 0.01 # StatArb trading signal value above
which to enter buy-orders/long-position
StatArb_VALUE_FOR_SELL_ENTRY = -0.01 # StatArb trading signal value below

Sophisticated Algorithmic Strategies Chapter 5

[168]

which to enter sell-orders/short-position
MIN_PRICE_MOVE_FROM_LAST_TRADE = 0.01 # Minimum price change since last
trade before considering trading again, this is to prevent over-trading
at/around same prices
NUM_SHARES_PER_TRADE = 1000000 # Number of currency to buy/sell on every
trade
MIN_PROFIT_TO_CLOSE = 10 # Minimum Open/Unrealized profit at which to close
positions and lock profits

Quantifying and computing StatArb trading signals
We will see over available prices a day at a time and see what calculations need1.
to be performed, starting with the computation of SimpleMovingAverages and
price deviation from the rolling SMA first:

for i in range(0, num_days):
 close_prices = {}

 # Build ClosePrice series, compute SMA for each symbol and price-
deviation from SMA for each symbol
 for symbol in SYMBOLS:
 close_prices[symbol] = symbols_data[symbol]['Close'].iloc[i]
 if not symbol in price_history.keys():
 price_history[symbol] = []
 price_deviation_from_sma[symbol] = []

 price_history[symbol].append(close_prices[symbol])
 if len(price_history[symbol]) > SMA_NUM_PERIODS: # we track at
most SMA_NUM_PERIODS number of prices
 del (price_history[symbol][0])

 sma = stats.mean(price_history[symbol]) # Rolling
SimpleMovingAverage
 price_deviation_from_sma[symbol].append(close_prices[symbol] -
sma) # price deviation from mean
 if len(price_deviation_from_sma[symbol]) >
PRICE_DEV_NUM_PRICES:
 del (price_deviation_from_sma[symbol][0])

Sophisticated Algorithmic Strategies Chapter 5

[169]

Next, we need to compute the relationships between the CAD/USD currency pair2.
price deviations and the other currency pair price deviations. We will use
covariance and correlation between the series of price deviations from SMA that
we computed in the previous section. In this same loop, we will also compute the
CAD/USD price deviation as projected by every other lead currency pair, and see
what the difference between the projected price deviation and actual price
deviation is. We will need these individual deltas between projected price
deviation and actual price deviation to get a final delta value that we will use for
trading.

First, let's look at the code block that populates the correlation_history and
the delta_projected_actual_history dictionaries:

 # Now compute covariance and correlation between
TRADING_INSTRUMENT and every other lead symbol
 # also compute projected price deviation and find delta between
projected and actual price deviations.
 projected_dev_from_sma_using = {}
 for symbol in SYMBOLS:
 if symbol == TRADING_INSTRUMENT: # no need to find relationship
between trading instrument and itself
 continue

 correlation_label = TRADING_INSTRUMENT + '<-' + symbol
 if correlation_label not in correlation_history.keys(): # first
entry for this pair in the history dictionary
 correlation_history[correlation_label] = []
 delta_projected_actual_history[correlation_label] = []

 if len(price_deviation_from_sma[symbol]) < 2: # need atleast
two observations to compute covariance/correlation
 correlation_history[correlation_label].append(0)
 delta_projected_actual_history[correlation_label].append(0)
 continue

Sophisticated Algorithmic Strategies Chapter 5

[170]

Now, let's look at the code block to compute correlation and covariance between
the currency pairs:

 corr =
np.corrcoef(price_deviation_from_sma[TRADING_INSTRUMENT],
price_deviation_from_sma[symbol])
 cov = np.cov(price_deviation_from_sma[TRADING_INSTRUMENT],
price_deviation_from_sma[symbol])
 corr_trading_instrument_lead_instrument = corr[0, 1] # get the
correlation between the 2 series
 cov_trading_instrument_lead_instrument = cov[0, 0] / cov[0, 1]
get the covariance between the 2 series

correlation_history[correlation_label].append(corr_trading_instrume
nt_lead_instrument)

Finally, let's look at the code block that computes the projected price movement,
uses that to find the difference between the projected movement and actual
movement, and saves it in our delta_projected_actual_history list per
currency pair:

 # projected-price-deviation-in-TRADING_INSTRUMENT is covariance
* price-deviation-in-lead-symbol
 projected_dev_from_sma_using[symbol] =
price_deviation_from_sma[symbol][-1] *
cov_trading_instrument_lead_instrument

 # delta positive => signal says TRADING_INSTRUMENT price should
have moved up more than what it did
 # delta negative => signal says TRADING_INSTRUMENT price should
have moved down more than what it did.
 delta_projected_actual = (projected_dev_from_sma_using[symbol]
- price_deviation_from_sma[TRADING_INSTRUMENT][-1])
delta_projected_actual_history[correlation_label].append(delta_proj
ected_actual)

Sophisticated Algorithmic Strategies Chapter 5

[171]

Let's combine these individual deltas between projected and actual price3.
deviation in CAD/USD to get one final StatArb signal value for CAD/USD that is
a combination of projections from all the other currency pairs. To combine these
different projections, we will use the magnitude of the correlation between
CAD/USD and the other currency pairs to weigh the delta between projected and
actual price deviations in CAD/USD as predicted by the other pairs. Finally, we
will normalize the final delta value by the sum of each individual weight
(magnitude of correlation) and that is what we will use as our final signal to
build our trading strategy around:

 # weigh predictions from each pair, weight is the correlation
between those pairs
 sum_weights = 0 # sum of weights is sum of correlations for each
symbol with TRADING_INSTRUMENT
 for symbol in SYMBOLS:
 if symbol == TRADING_INSTRUMENT: # no need to find relationship
between trading instrument and itself
 continue

 correlation_label = TRADING_INSTRUMENT + '<-' + symbol
 sum_weights += abs(correlation_history[correlation_label][-1])

 final_delta_projected = 0 # will hold final prediction of price
deviation in TRADING_INSTRUMENT, weighing projections from all
other symbols.
 close_price = close_prices[TRADING_INSTRUMENT]
 for symbol in SYMBOLS:
 if symbol == TRADING_INSTRUMENT: # no need to find relationship
between trading instrument and itself
 continue

 correlation_label = TRADING_INSTRUMENT + '<-' + symbol

 # weight projection from a symbol by correlation
 final_delta_projected +=
(abs(correlation_history[correlation_label][-1]) *
delta_projected_actual_history[correlation_label][-1])

 # normalize by diving by sum of weights for all pairs
 if sum_weights != 0:
 final_delta_projected /= sum_weights
 else:
 final_delta_projected = 0

 final_delta_projected_history.append(final_delta_projected)

Sophisticated Algorithmic Strategies Chapter 5

[172]

StatArb execution logic
Let's execute a strategy for the StatArb signal using the following steps:

Now, using the StatArb signal we just computed, we can build a strategy similar1.
to the trend-following strategy we saw before. Let's start by looking at the
trading logic that controls the sell trades:

 if ((final_delta_projected < StatArb_VALUE_FOR_SELL_ENTRY and
abs(close_price - last_sell_price) >
MIN_PRICE_MOVE_FROM_LAST_TRADE) # StatArb above sell entry
threshold, we should sell
 or
 (position > 0 and (open_pnl > MIN_PROFIT_TO_CLOSE))): # long
from negative StatArb and StatArb has gone positive or position is
profitable, sell to close position
 orders.append(-1) # mark the sell trade
 last_sell_price = close_price
 position -= NUM_SHARES_PER_TRADE # reduce position by the size
of this trade
 sell_sum_price_qty += (close_price * NUM_SHARES_PER_TRADE) #
update vwap sell-price
 sell_sum_qty += NUM_SHARES_PER_TRADE
 print("Sell ", NUM_SHARES_PER_TRADE, " @ ", close_price,
"Position: ", position)
 print("OpenPnL: ", open_pnl, " ClosedPnL: ", closed_pnl, "
TotalPnL: ", (open_pnl + closed_pnl))

Now, let's look at the buy trade logic, which is quite similar to the sell trade logic:2.

 elif ((final_delta_projected > StatArb_VALUE_FOR_BUY_ENTRY and
abs(close_price - last_buy_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE)
StatArb below buy entry threshold, we should buy
 or
 (position < 0 and (open_pnl > MIN_PROFIT_TO_CLOSE))): #
short from positive StatArb and StatArb has gone negative or
position is profitable, buy to close position
 orders.append(+1) # mark the buy trade
 last_buy_price = close_price
 position += NUM_SHARES_PER_TRADE # increase position by the
size of this trade
 buy_sum_price_qty += (close_price * NUM_SHARES_PER_TRADE) #
update the vwap buy-price
 buy_sum_qty += NUM_SHARES_PER_TRADE
 print("Buy ", NUM_SHARES_PER_TRADE, " @ ", close_price,
"Position: ", position)
 print("OpenPnL: ", open_pnl, " ClosedPnL: ", closed_pnl, "
TotalPnL: ", (open_pnl + closed_pnl))

Sophisticated Algorithmic Strategies Chapter 5

[173]

 else:
 # No trade since none of the conditions were met to buy or sell
 orders.append(0)
 positions.append(position)

Finally, let's also look at the position management and PnL update logic, very3.
similar to previous trading strategies:

 # This section updates Open/Unrealized & Closed/Realized
positions
 open_pnl = 0
 if position > 0:
 if sell_sum_qty > 0: # long position and some sell trades have
been made against it, close that amount based on how much was sold
against this long position
 open_pnl = abs(sell_sum_qty) * (sell_sum_price_qty /
sell_sum_qty - buy_sum_price_qty / buy_sum_qty)
 # mark the remaining position to market i.e. pnl would be what
it would be if we closed at current price
 open_pnl += abs(sell_sum_qty - position) * (close_price -
buy_sum_price_qty / buy_sum_qty)
 elif position < 0:
 if buy_sum_qty > 0: # short position and some buy trades have
been made against it, close that amount based on how much was
bought against this short position
 open_pnl = abs(buy_sum_qty) * (sell_sum_price_qty /
sell_sum_qty - buy_sum_price_qty / buy_sum_qty)
 # mark the remaining position to market i.e. pnl would be what
it would be if we closed at current price
 open_pnl += abs(buy_sum_qty - position) * (sell_sum_price_qty /
sell_sum_qty - close_price)
 else:
 # flat, so update closed_pnl and reset tracking variables for
positions & pnls
 closed_pnl += (sell_sum_price_qty - buy_sum_price_qty)
 buy_sum_price_qty = 0
 buy_sum_qty = 0
 sell_sum_price_qty = 0
 sell_sum_qty = 0
 last_buy_price = 0
 last_sell_price = 0

 pnls.append(closed_pnl + open_pnl)

Sophisticated Algorithmic Strategies Chapter 5

[174]

StatArb signal and strategy performance analysis
Now, let's analyze the StatArb signal using the following steps:

Let's visualize a few more details about the signals in this trading strategy,1.
starting with the correlations between CAD/USD and the other currency pairs as
it evolves over time:

Plot correlations between TRADING_INSTRUMENT and other currency
pairs
correlation_data = pd.DataFrame()
for symbol in SYMBOLS:
 if symbol == TRADING_INSTRUMENT:
 continue

 correlation_label = TRADING_INSTRUMENT + '<-' + symbol
 correlation_data =
correlation_data.assign(label=pd.Series(correlation_history[correla
tion_label], index=symbols_data[symbol].index))
 ax = correlation_data['label'].plot(color=next(cycol), lw=2.,
label='Correlation ' + correlation_label)

for i in np.arange(-1, 1, 0.25):
 plt.axhline(y=i, lw=0.5, color='k')
plt.legend()
plt.show()

This plot shows the correlation between CADUSD and other currency pairs as it
evolves over the course of this trading strategy. Correlations close to -1 or +1
signify strongly correlated pairs, and correlations that hold steady are the stable
correlated pairs. Currency pairs where correlations swing around between
negative and positive values indicate extremely uncorrelated or unstable currency
pairs, which are unlikely to yield good predictions in the long run. However, we
do not know how the correlation would evolve ahead of time, so we have no
choice but to use all currency pairs available to us in our StatArb trading strategy:

Sophisticated Algorithmic Strategies Chapter 5

[175]

As we suspected, the currency pairs that are most strongly correlated to
CAD/USD price deviations are AUD/USD and NZD/USD. JPY/USD is the least
correlated to CAD/USD price deviations.

Now, let's inspect the delta between projected and actual price deviations in2.
CAD/USD as projected by each individual currency pair individually:

Plot StatArb signal provided by each currency pair
delta_projected_actual_data = pd.DataFrame()
for symbol in SYMBOLS:
 if symbol == TRADING_INSTRUMENT:
 continue

 projection_label = TRADING_INSTRUMENT + '<-' + symbol
 delta_projected_actual_data =
delta_projected_actual_data.assign(StatArbTradingSignal=pd.Series(d
elta_projected_actual_history[projection_label],
index=symbols_data[TRADING_INSTRUMENT].index))
 ax =
delta_projected_actual_data['StatArbTradingSignal'].plot(color=next
(cycol), lw=1., label='StatArbTradingSignal ' + projection_label)
plt.legend()
plt.show()

Sophisticated Algorithmic Strategies Chapter 5

[176]

This is what the StatArb signal values would look like if we used any of the
currency pairs alone to project CAD/USD price deviations:

Here, the plot seems to suggest that JPYUSD and CHFUSD have very large
predictions, but as we saw before those pairs do not have good correlations with
CADUSD, so these are likely to be bad predictions due to poor predictive
relationships between CADUSD - JPYUSD and CADUSD - CHFUSD. One lesson to take
away from this is that StatArb benefits from having multiple leading trading
instruments, because when relationships break down between specific pairs, the
other strongly correlated pairs can help offset bad predictions, which we
discussed earlier.

Sophisticated Algorithmic Strategies Chapter 5

[177]

Now, let's set up our data frames to plot the close price, trades, positions, and3.
PnLs we will observe:

delta_projected_actual_data =
delta_projected_actual_data.assign(ClosePrice=pd.Series(symbols_dat
a[TRADING_INSTRUMENT]['Close'],
index=symbols_data[TRADING_INSTRUMENT].index))
delta_projected_actual_data =
delta_projected_actual_data.assign(FinalStatArbTradingSignal=pd.Ser
ies(final_delta_projected_history,
index=symbols_data[TRADING_INSTRUMENT].index))
delta_projected_actual_data =
delta_projected_actual_data.assign(Trades=pd.Series(orders,
index=symbols_data[TRADING_INSTRUMENT].index))
delta_projected_actual_data =
delta_projected_actual_data.assign(Position=pd.Series(positions,
index=symbols_data[TRADING_INSTRUMENT].index))
delta_projected_actual_data =
delta_projected_actual_data.assign(Pnl=pd.Series(pnls,
index=symbols_data[TRADING_INSTRUMENT].index))

plt.plot(delta_projected_actual_data.index,
delta_projected_actual_data.ClosePrice, color='k', lw=1.,
label='ClosePrice')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Trades == 1].index,
delta_projected_actual_data.ClosePrice[delta_projected_actual_data.
Trades == 1], color='r', lw=0, marker='^', markersize=7,
label='buy')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Trades == -1].index,
delta_projected_actual_data.ClosePrice[delta_projected_actual_data.
Trades == -1], color='g', lw=0, marker='v', markersize=7,
label='sell')
plt.legend()
plt.show()

Sophisticated Algorithmic Strategies Chapter 5

[178]

The following plot tells us at what prices the buy and sell trades are made in
CADUSD. We will need to inspect the final trading signal in addition to this plot to
fully understand the behavior of this StatArb signal and strategy:

Now, let's look at the actual code to build visualization for the final StatArb
trading signal, and overlay buy and sell trades over the lifetime of the signal
evolution. This will help us understand for what signal values buy and sell trades
are made and if that is in line with our expectations:

plt.plot(delta_projected_actual_data.index,
delta_projected_actual_data.FinalStatArbTradingSignal, color='k',
lw=1., label='FinalStatArbTradingSignal')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Trades == 1].index,
delta_projected_actual_data.FinalStatArbTradingSignal[delta_project
ed_actual_data.Trades == 1], color='r', lw=0, marker='^',
markersize=7, label='buy')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Trades == -1].index,
delta_projected_actual_data.FinalStatArbTradingSignal[delta_project
ed_actual_data.Trades == -1], color='g', lw=0, marker='v',
markersize=7, label='sell')
plt.axhline(y=0, lw=0.5, color='k')
for i in np.arange(StatArb_VALUE_FOR_BUY_ENTRY,
StatArb_VALUE_FOR_BUY_ENTRY * 10, StatArb_VALUE_FOR_BUY_ENTRY * 2):

Sophisticated Algorithmic Strategies Chapter 5

[179]

 plt.axhline(y=i, lw=0.5, color='r')
for i in np.arange(StatArb_VALUE_FOR_SELL_ENTRY,
StatArb_VALUE_FOR_SELL_ENTRY * 10, StatArb_VALUE_FOR_SELL_ENTRY *
2):
 plt.axhline(y=i, lw=0.5, color='g')
plt.legend()
plt.show()

Since we adopted the trend-following approach in our StatArb trading strategy,
we expect to buy when the signal value is positive and sell when the signal value
is negative. Let's see whether that's the case in the plot:

Based on this plot and our understanding of trend-following strategies in
addition to the StatArb signal we built, we do indeed see many buy trades when
the signal value is positive and sell trades when the signal values are negative.
The buy trades made when signal values are negative and sell trades made when
signal values are positive can be attributed to the trades that close profitable
positions, as we saw in our previous mean reversion and trend-following trading
strategies.

Sophisticated Algorithmic Strategies Chapter 5

[180]

Let's wrap up our analysis of StatArb trading strategies by visualizing the4.
positions and PnLs:

plt.plot(delta_projected_actual_data.index,
delta_projected_actual_data.Position, color='k', lw=1.,
label='Position')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Position == 0].index,
delta_projected_actual_data.Position[delta_projected_actual_data.Po
sition == 0], color='k', lw=0, marker='.', label='flat')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Position > 0].index,
delta_projected_actual_data.Position[delta_projected_actual_data.Po
sition > 0], color='r', lw=0, marker='+', label='long')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Position < 0].index,
delta_projected_actual_data.Position[delta_projected_actual_data.Po
sition < 0], color='g', lw=0, marker='_', label='short')
plt.axhline(y=0, lw=0.5, color='k')
for i in range(NUM_SHARES_PER_TRADE, NUM_SHARES_PER_TRADE * 5,
NUM_SHARES_PER_TRADE):
 plt.axhline(y=i, lw=0.5, color='r')
for i in range(-NUM_SHARES_PER_TRADE, -NUM_SHARES_PER_TRADE * 5, -
NUM_SHARES_PER_TRADE):
 plt.axhline(y=i, lw=0.5, color='g')
plt.legend()
plt.show()

The position plot shows the evolution of the StatArb trading strategy's position
over the course of its lifetime. Remember that these positions are in dollar
notional terms, so a position of 100K is equivalent to roughly 1 future contract,
which we mention to make it clear that a position of 100K does not mean a
position of 100K contracts!

Sophisticated Algorithmic Strategies Chapter 5

[181]

Finally, let's have a look at the code for the PnL plot, identical to what we've been5.
using before:

plt.plot(delta_projected_actual_data.index,
delta_projected_actual_data.Pnl, color='k', lw=1., label='Pnl')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Pnl > 0].index,
delta_projected_actual_data.Pnl[delta_projected_actual_data.Pnl >
0], color='g', lw=0, marker='.')
plt.plot(delta_projected_actual_data.loc[delta_projected_actual_dat
a.Pnl < 0].index,
delta_projected_actual_data.Pnl[delta_projected_actual_data.Pnl <
0], color='r', lw=0, marker='.')
plt.legend()
plt.show()

Sophisticated Algorithmic Strategies Chapter 5

[182]

We expect to see better performance here than in our previously built trading strategies
because it relies on a fundamental relationship between different currency pairs and should
be able to perform better during different market conditions because of its use of multiple
currency pairs as lead trading instruments:

And that's it, now you have a working example of a profitable statistical arbitrage strategy
and should be able to improve and extend it to other trading instruments!

Sophisticated Algorithmic Strategies Chapter 5

[183]

Summary
This chapter made use of some of the trading signals we've seen in the previous chapters to
build realistic and robust trend-following and mean reversion trading strategies. In
addition, we went another step further and made those basic strategies more sophisticated
by adding a volatility measure trading signal to make it more dynamic and adaptive to
different market conditions. We also looked at a completely new form of trading strategy in
the form of trading strategies dealing with economic releases and how to carry out the
analysis for that flavor of trading strategies for our sample Non Farm Payroll data. Finally,
we looked at our most sophisticated and complex trading strategy so far, which was the
statistical arbitrage strategy, and applied it to CAD/USD with the major currency pairs as
leading trading signals. We investigated in great detail how to quantify and parameterize
the StatArb trading signal and trading strategy and visualized every step of that process
and concluded that the trading strategy delivered excellent results for our data set.

In the next chapter, you will learn how to measure and manage the risk (market risk,
operational risk, and software implementation bugs) of algorithmic strategies.

6
Managing the Risk of

Algorithmic Strategies
So far, we have built a good understanding of how algorithmic trading works and how we
can build trading signals from market data. We also looked into some basic trading
strategies, as well as more sophisticated trading strategies, so it may seem like we are in a
good place to start trading, right? Not quite. Another very important requirement to be
successful at algorithmic trading is understanding risk management and using good risk
management practices.

Bad risk management practices can turn any good algorithmic trading strategy into a non-
profitable one. On the other hand, good risk management practices can turn a seemingly
inferior trading strategy into an actually profitable one. In this chapter, we will examine the
different kinds of risk in algorithmic trading, look at how to quantitatively measure and
compare these risks, and explore how to build a good risk management system to adhere to
these risk management practices.

In this chapter, we will cover the following topics:

Differentiating between the types of risk and risk factors
Quantifying the risk
Differentiating between the measures of risk
Making a risk management algorithm

Managing the Risk of Algorithmic Strategies Chapter 6

[185]

Differentiating between the types of risk and
risk factors
Risks in algorithmic trading strategies can basically be of two things: risks that cause money
loss and risks that cause illegal/forbidden behavior in markets that cause regulatory actions.
Let's take a look at the risks involved before we look at what factors lead to
increasing/decreasing these risks in the business of algorithmic trading.

Risk of trading losses
This is the most obvious and intuitive one—we want to trade to make money, but we
always run through the risk of losing money against other market participants. Trading is a
zero-sum game: some participants will make money, while some will lose money. The
amount that's lost by the losing participants is the amount that's gained by the winning
participants. This simple fact is what also makes trading quite challenging. Generally, less
informed participants will lose money to more informed participants. Informed is a loose
term here; it can mean participants with access to information that others don't have. This
can include access to secretive or expensive or even illegal information sources, the ability
to transport and consume such information that other participants don't have, and so on.
Information edge can also be gained by participants with a superior ability to glean
information from the available information, that is, some participants will have better
signals, better analytics abilities, and better predictive abilities to edge out less informed
participants. Obviously, more sophisticated participants will also beat less sophisticated
participants.

Sophistication can be gained from technology advantages as well, such as faster reacting
trading strategies. The use of a low-level language such as C/C++ is harder to develop
software in but allows us to build trading software systems that react in single-digit
microseconds processing time. An extreme speed advantage is available to participants that
use Field Programmable Gate Arrays (FPGAs) to achieve sub-microsecond response times
to market data updates. Another avenue of gaining sophistication is by having more
complex trading algorithms with more complex logic that's meant to squeeze out as much
edge as possible. It should be clear that algorithmic trading is an extremely complex and
competitive business and that all the participants are doing their best to squeeze out every
bit of profit possible by being more informed and sophisticated.

https://news.efinancialcareers.com/us-en/291459/xr-trading-2016 discusses an
example of trading losses due to decreased profitability, which occurs due to competition
among market participants.

https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016
https://news.efinancialcareers.com/us-en/291459/xr-trading-2016

Managing the Risk of Algorithmic Strategies Chapter 6

[186]

Regulation violation risks
The other risk that isn't everyone's first thought has to do with making sure that
algorithmic trading strategies are not violating any regulatory rules. Failing to do so often
results in astronomical fines, massive legal fees, and can often get participants banned from
trading from certain or all exchanges. Since setting up successful algorithmic trading
businesses are multi-year, multi-million dollar ventures, getting shut down due to
regulatory reasons can be crushing. The SEC (https://www.sec.gov/), FINRA (https://
www.finra.org/), and CFTC (https://www.cftc.gov/) are just some of many regulatory
governing bodies watching over algorithmic trading activity in equity, currency, futures,
and options markets.

These regulatory firms enforce global and local regulations. In addition, the electronic
trading exchanges themselves impose regulations and laws, the violation of which can also
incur severe penalties. There are many market participants or algorithmic trading strategy
behaviors that are forbidden. Some incur a warning or an audit and some incur penalties.
Insider trading reports are quite well known by people inside and outside of the
algorithmic trading business. While insider trading doesn't really apply to algorithmic
trading or high-frequency trading, we will introduce some of the common issues in
algorithmic trading here.

This list is nowhere near complete, but these are the top regulatory issues in algorithmic
trading or high-frequency trading.

Spoofing
Spoofing typically refers to the practice of entering orders into the market that are not
considered bonafide. A bonafide order is one that is entered with the intent of trading.
Spoofing orders are entered into the market with the intent of misleading other market
participants, and these orders were never entered with the intent of being executed. The
purpose of these orders is to make other participants believe that there are more real
market participants who are willing to buy or sell than there actually are. By spoofing on
the bid side, market participants are misled into thinking there is a lot of interest in buying.
This usually leads to other market participants adding more orders to the bid side and
moving or removing orders on the ask side with the expectation that prices will go up.

https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.sec.gov/
https://www.finra.org/
https://www.finra.org/
https://www.finra.org/
https://www.finra.org/
https://www.finra.org/
https://www.finra.org/
https://www.finra.org/
https://www.finra.org/
https://www.finra.org/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/
https://www.cftc.gov/

Managing the Risk of Algorithmic Strategies Chapter 6

[187]

When prices go up, the spoofer then sells at a higher price than would've been possible
without the spoofing orders. At this point, the spoofer initiates a short position and cancels
all the spoofing bid orders, causing other market participants to do the same. This drive
prices back down from these synthetically raised higher prices. When prices have dropped
sufficiently, the spoofer then buys at lower prices to cover the short position and lock in a
profit.

Spoofing algorithms can repeat this over and over in markets that are mostly
algorithmically trading and make a lot of money. This, however, is illegal in most markets
because it causes market price instability, provides participants with misleading
information about available market liquidity, and adversely affects non-algorithmic trading
investors/strategies. In summary, if such behavior was not made illegal, it would cause
cascading instability and make most market participants exit providing liquidity. Spoofing
is treated as a serious violation in most electronic exchanges, and exchanges have
sophisticated algorithms/monitoring systems to detect such behavior and flag market
participants who are spoofing.

The first case of spoofing got a lot of publicity, and those of you who are interested can
learn more at https://www.justice.gov/usao-ndil/pr/high-frequency-trader-
sentenced-three-years-prison-disrupting-futures-market-first.

Quote stuffing
Quote stuffing is a manipulation tactic that was employed by high-frequency trading
participants. Nowadays, most exchanges have many rules that make quote stuffing
infeasible as a profitable trading strategy. Quote stuffing is the practice of using very fast
trading algorithms and hardware to enter, modify, and cancel large amounts of orders in
one or more trading instruments. Since each order action by a market participant causes the
generation of public market data, it is possible for very fast participants to generate a
massive amount of market data and massively slow down slower participants who can no
longer react in time, thereby causing profits for high-frequency trading algorithms.

This is not as feasible in modern electronic trading markets, mainly because exchanges have
put in rules on messaging limits on individual market participants. Exchanges have the
ability to analyze and flag short-lived non-bonafide order flow, and modern matching
engines are able to better synchronize market data feeds with order flow feeds.

https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-
charged-with-quote-stuffing-and-manipulation-2010-9 discusses a recent quote
stuffing market manipulation incident that caused regulatory actions.

https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.justice.gov/usao-ndil/pr/high-frequency-trader-sentenced-three-years-prison-disrupting-futures-market-first
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9
https://www.businessinsider.com/huge-first-high-frequency-trading-firm-is-charged-with-quote-stuffing-and-manipulation-2010-9

Managing the Risk of Algorithmic Strategies Chapter 6

[188]

Banging the close
Banging the close is a disruptive and manipulative trading practice that still happens
periodically in electronic trading markets, either intentionally or accidentally, by trading
algorithms. This practice has to do with illegally manipulating the closing price of a
derivative, also known as the settlement price. Since positions in derivatives markets such
as futures are marked at the settlement price at the end of the day, this tactic uses large
orders during the final few minutes or seconds of closing where many market participants
are out of the market already to drive less liquid market prices in an illegal and disruptive
way.

This is, in some sense, similar to spoofing, but in this case, often, the participants banging
the close may not pick up new executions during the closing period, but may simply try to
move market prices to make their already existing positions more profitable. For cash-
settled derivatives contracts, the more favorable settlement price leads to more profit. This
is why trading closes are also monitored quite closely by electronic trading derivative
exchanges to detect and flag this disruptive practice.

https://www.cftc.gov/PressRoom/PressReleases/pr5815-10 discusses an incident of
banging the close for those who are interested.

Sources of risk
Now that we have a good understanding of the different kinds of risk in algorithmic
trading, let's look at the factors in algorithmic trading strategy development, optimization,
maintenance, and operation that causes them.

Software implementation risk
A modern algorithmic trading business is essentially a technology business, hence giving
birth to the new term FinTech to mean the intersection of finance and technology.
Computer software is designed, developed, and tested by humans who are error-prone and
sometimes, these errors creep into trading systems and algorithmic trading strategies.
Software implementation bugs are often the most overlooked source of risk in algorithmic
trading. While operation risk and market risk are extremely important, software
implementation bugs have the potential to cause millions of dollars in losses, and there
have been many cases of firms going bankrupt due to software implementation bugs within
minutes.

https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10
https://www.cftc.gov/PressRoom/PressReleases/pr5815-10

Managing the Risk of Algorithmic Strategies Chapter 6

[189]

In recent times, there was the infamous Knight Capital incident, where a software
implementation bug combined with an operations risk issue caused them to lose $440
million within 45 minutes and they ended up getting shut down. Software implementation
bugs are also very tricky because software engineering is a very complex process, and when
we add the additional complexity of having sophisticated and complex algorithmic trading
strategies and logic, it is hard to guarantee that the implementation of trading strategies
and systems are safe from bugs. More information can be found at https://dealbook.
nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/.

Modern algorithmic trading firms have rigorous software development practices to
safeguard themselves against software bugs. These include rigorous unit tests, which are
small tests on individual software components to verify their behavior doesn't change to an
incorrect behavior as software development/maintenance being made to existing
components is performed. There are also regression tests, which are tests that test larger
components that are composed of smaller components as a whole to ensure the higher-level
behavior remains consistent. All electronic trading exchanges also provide a test market
environment with test market data feeds and test order entry interfaces where market
participants have to build, test, and certify their components with the exchange before they
are even allowed to trade in live markets.

Most sophisticated algorithmic trading participants also have backtesting software that
simulates a trading strategy over historically recorded data to ensure strategy behavior is in
line with expectations. We will explore backtesting further in Chapter 9, Creating a
Backtester in Python. Finally, other software management practices, such as code
reviews and change management, are also performed on a daily basis to verify the integrity
of algorithmic trading systems and strategies on a daily basis. Despite all of these
precautions, software implementation bugs do slip into live trading markets, so we should
always be aware and cautious because software is never perfect and the cost of
mistakes/bugs is very high in the algorithmic trading business, and even higher in the HFT
business.

DevOps risk
DevOps risk is the term that is used to describe the risk potential when algorithmic trading
strategies are deployed to live markets. This involves building and deploying correct
trading strategies and configuring the configuration, the signal parameters, the trading
parameters, and starting, stopping, and monitoring them. Most modern trading firms trade
markets electronically almost 23 hours a day, and they have a large number of staff whose
only job is to keep an eye on the automated algorithmic trading strategies that are deployed
to live markets to ensure they are behaving as expected and no erroneous behavior goes
uninvestigated. They are known as the Trading Desk, or TradeOps or DevOps.

https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-440-million/

Managing the Risk of Algorithmic Strategies Chapter 6

[190]

These people have a decent understanding of software development, trading rules, and
exchange for provided risk monitoring interfaces. Often, when software implementation
bugs end up going to live markets, they are the final line of defense, and it is their job to
monitor the systems, detect issues, safely pause or stop the algorithms, and contact and
resolve the issues that have emerged. This is the most common understanding of where
operation risk can show up. Another source of operation risk is in algorithmic trading
strategies that are not 100% black box. Black box trading strategies are trading strategies
that do not require any human feedback or interaction. These are started at a certain time
and then stopped at a certain time, and the algorithms themselves make all the decisions.

Gray box trading strategies are trading strategies that are not 100% autonomous. These
strategies still have a lot of automated decision-making built into them, but they also have
external controls that allow the traders or TradeOps engineers to monitor the strategies, as
well as adjust parameters and trading strategy behavior, and even send manual orders.
Now, during these manual human interventions, there is another source of risk, which is
basically the risk of humans making mistakes in the commands/adjustments that are sent to
these strategies. Sending incorrect parameters can cause the algorithm to behave incorrectly
and cause losses.

There are also cases of sending bad commands, which can cause an unexpected and
unintentional large impact on the market, causing trading losses and market disruptions
that add regulatory fines. One of the common errors is the fat finger error, where prices,
sizes, and buy/sell instructions are sent incorrectly due to a fat finger. Some examples can be
found at https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-
history-of-some-of-the-market-s-worst-fat-fingers.

Market risk
Finally, we have market risk, which is what is commonly thought of when we think of risk
in algorithmic trading. This is the risk of trading against and losing money to more
informed participants. Every market participant, at some point or the other, on some trade
or the other, will lose money to a more informed participant. We discussed what makes an
informed participant superior to a non-informed one in the previous section. Obviously, the
only way to avoid market risk is to get access to more information, improve the trading
edge, improve sophistication, and improve technology advantages. But since market risk is
a truth of all algorithmic trading strategies, a very important aspect is to understand the
behavior of the algorithmic trading strategy before deploying it to live markets.

https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers
https://www.bloomberg.com/news/articles/2019-01-24/oops-a-brief-history-of-some-of-the-market-s-worst-fat-fingers

Managing the Risk of Algorithmic Strategies Chapter 6

[191]

This involves understanding what to expect normal behavior to look like and, more
importantly, understanding when a certain strategy makes and loses money and
quantifying loss metrics to set up expectations. Then, risk limits are set up at multiple
places in an algorithmic trading pipeline in the trading strategy, then in a central risk
monitoring system, then in the order gateway, sometimes at the clearing firm, and finally
sometimes even at the exchange level. Each extra layer of risk check can slow down a
market participant's ability to react to fast-moving markets, but it is essential to have these
to prevent runaway trading algorithms from causing a lot of damage.

Once the trading strategy has violated maximum trading risk limits assigned to it, it will be
shut down at one or more places where the risk validation is set up. Market risk is very
important to understand, implement, and configure correctly because incorrect risk
estimates can kill a profitable trading strategy by increasing the frequency and magnitude
of losing trades, losing positions, losing days, and even losing weeks or months. This is
because the trading strategy could have lost its profitable edge and if you leave it running
for too long without adapting it to changing markets, it can erode all the profits the strategy
may have generated in the past. Sometimes, market conditions are very different than what
is expected and strategies can go through periods of larger than normal losses, in which
cases it is important to have risk limits set up to detect outsized losses and adjust trading
parameters or stop trading.

We will look at what risk measures are common in algorithmic trading, how to quantify
and research them from historical data, and how to configure and calibrate algorithmic
strategies before deploying them to live markets. For now, the summary is that market risk
is a normal part of algorithmic trading, but failing to understand and prepare for it can
destroy a lot of good trading strategies.

Quantifying the risk
Now, let's get started with understanding what realistic risk constraints look like and how
to quantify them. We will list, define, and implement some of the most commonly used risk
limits in the modern algorithmic trading industry today. We will use the volatility adjusted
mean reversion strategy we built in Chapter 5, Sophisticated Algorithmic Strategies, as our
realistic trading strategy, which we now need to define and quantify risk measures for.

Managing the Risk of Algorithmic Strategies Chapter 6

[192]

The severity of risk violations
One thing to understand before diving into all the different risk measures is defining what
the severity of a risk violation means. So far, we've been discussing risk violations as being
maximum risk limit violations. But in practice, there are multiple levels of every risk limit,
and each level of risk limit violation is not equally as catastrophic to algorithmic trading
strategies. The lowest severity risk violation would be considered a warning risk violation,
which means that this risk violation, while not expected to happen regularly, can happen
normally during a trading strategy operation. Intuitively, it is easy to think of this as, say,
on most days, trading strategies do not send more than 5,000 orders a day, but on certain
volatile days, it is possible and acceptable that the trading strategy sends 20,000 orders on
that day. This would be considered an example of a warning risk violation – this is
unlikely, but not a sign of trouble. The purpose of this risk violation is to warn the trader
that something unlikely is happening in the market or trading strategy.

The next level of risk violation is what would be considered as something where the
strategy is still functioning correctly but has reached the limits of what it is allowed to do,
and must safely liquidate and shut down. Here, the strategy is allowed to send orders and
make trades that flatten the position and cancel new entry orders, if there are any. Basically,
the strategy is done trading but is allowed to automatically handle the violation and finish
trading until a trader checks on what happens and decides to either restart and allocate
higher risk limits to the trading strategy.

The final level of risk violation is what would be considered a maximum possible risk
violation, which is a violation that should never, ever happen. If a trading strategy ever
triggers this risk violation, it is a sign that something went very wrong. This risk violation
means that the strategy is no longer allowed to send any more order flow to the live
markets. This risk violation would only be triggered during periods of extremely
unexpected events, such as a flash crash market condition. This severity of risk violation
basically means that the algorithmic trading strategy is not designed to deal with such an
event automatically and must freeze trading and then resort to external operators to
manage open positions and live orders.

Managing the Risk of Algorithmic Strategies Chapter 6

[193]

Differentiating the measures of risk
Let's explore different measures of risk. We will use the trading performance from the
volatility adjusted mean reversion strategy we saw in Chapter 5, Sophisticated Algorithmic
Strategies, as an example of a trading strategy in which we wish to understand the risks
behind and quantify and calibrate them.

In Chapter 5, Sophisticated Algorithmic Trading Strategies, we built the Mean Reversion,
Volatility Adjusted Mean Reversion, Trend Following, and Volatility Adjusted Trend
Following strategies. During the analysis of their performance, we wrote the results into the
corresponding CSV files. These can also be found in this book's GitHub repository, https:/
/github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-
Algorithmic-Trading, or by running the volatility adjusted mean reversion strategy
(volatility_mean_reversion.py) in Chapter 5, Sophisticated Algorithmic Strategies, in
the Mean Reversion Strategy that dynamically adjusts for changing volatility section. Let's load
up the trading performance .csv file, as shown in the following code block, and quickly
look at what fields we have available:

import pandas as pd
import matplotlib.pyplot as plt

results = pd.read_csv('volatility_adjusted_mean_reversion.csv')
print(results.head(1))

The code will return the following output:

 Date Open High Low Close Adj Close \
0 2014-01-02 555.647278 556.788025 552.06073 554.481689 554.481689
 Volume ClosePrice Fast10DayEMA Slow40DayEMA APO Trades Position PnL
0 3656400 554.481689 554.481689 554.481689 0.0 0 0 0.0

For the purposes of implementing and quantifying risk measures, the fields we are
interested in are Date, High, Low, ClosePrice, Trades, Position, and PnL. We will ignore the
other fields since we do not require them for the risk measures we are currently interested
in. Now, let's dive into understanding and implementing our risk measures.

https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading
https://github.com/PacktPublishing/Learn-Algorithmic-Trading---Fundamentals-of-Algorithmic-Trading

Managing the Risk of Algorithmic Strategies Chapter 6

[194]

Stop-loss
The first risk limit we will look at is quite intuitive and is called stop-loss, or max-loss. This
limit is the maximum amount of money a strategy is allowed to lose, that is, the minimum
PnL allowed. This often has a notion of a time frame for that loss, meaning stop-loss can be
for a day, for a week, for a month, or for the entire lifetime of the strategy. A stop-loss with
a time frame of a day means that if the strategy loses a stop-loss amount of money in a
single day, it is not allowed to trade any more on that day, but can resume the next day.
Similarly, for a stop-loss amount in a week, it is not allowed to trade anymore for that
week, but can resume next week.

Now, let's compute stop-loss levels on a week and month for the volatility adjusted mean
reversion strategy, as shown in the following code:

num_days = len(results.index)

pnl = results['PnL']

weekly_losses = []
monthly_losses = []

for i in range(0, num_days):
 if i >= 5 and pnl[i - 5] > pnl[i]:
 weekly_losses.append(pnl[i] - pnl[i - 5])

 if i >= 20 and pnl[i - 20] > pnl[i]:
 monthly_losses.append(pnl[i] - pnl[i - 20])

plt.hist(weekly_losses, 50)
plt.gca().set(title='Weekly Loss Distribution', xlabel='$',
ylabel='Frequency')
plt.show()

plt.hist(monthly_losses, 50)
plt.gca().set(title='Monthly Loss Distribution', xlabel='$',
ylabel='Frequency')
plt.show()

Managing the Risk of Algorithmic Strategies Chapter 6

[195]

The code will return the following plots as output. Let's have a look at the weekly loss
distribution plot shown here:

Now, let's take a look at the monthly loss distribution plot shown here:

Managing the Risk of Algorithmic Strategies Chapter 6

[196]

The plots show the distribution of weekly and monthly losses. From these, we can observe
the following:

A weekly loss of anything more than $4K and a monthly loss of anything more
than $6K is highly unexpected.
A weekly loss of more than $12K and a monthly loss of $14K have never
happened, so it can be considered an unprecedented event, but we will revisit
this later.

Max drawdown
Max drawdown is also a PnL metric, but this measures the maximum loss that a strategy
can take over a series of days. This is defined as the peak to trough decline in a trading
strategy's account value. This is important as a risk measure so that we can get an idea of
what the historical maximum decline in the account value can be. This is important because
we can get unlucky during the deployment of a trading strategy and run it in live markets
right at the beginning of the drawdown.

Having an expectation of what the maximum drawdown is can help us understand
whether the strategy loss streak is still within our expectations or whether something
unprecedented is happening. Let's look at how to compute it:

max_pnl = 0
max_drawdown = 0
drawdown_max_pnl = 0
drawdown_min_pnl = 0

for i in range(0, num_days):
 max_pnl = max(max_pnl, pnl[i])
 drawdown = max_pnl - pnl[i]

 if drawdown > max_drawdown:
 max_drawdown = drawdown
 drawdown_max_pnl = max_pnl
 drawdown_min_pnl = pnl[i]

print('Max Drawdown:', max_drawdown)

results['PnL'].plot(x='Date', legend=True)
plt.axhline(y=drawdown_max_pnl, color='g')
plt.axhline(y=drawdown_min_pnl, color='r')
plt.show()

Managing the Risk of Algorithmic Strategies Chapter 6

[197]

The code will return the following output:

Max Drawdown: 15340.41716347829

The plots that follow are a result of the preceding code. Let's have a look:

In the plot, the max drawdown occurs roughly during the middle of this PnL series, with
the maximum PnL being 37K and the minimum PnL after that high being 22K, causing the
maximum drawdown achieved to be roughly 15K:

Managing the Risk of Algorithmic Strategies Chapter 6

[198]

The plot is simply the same plot as before but zoomed in to the exact observations where
the drawdown occurs. As we mentioned previously, after achieving a high of roughly 37K,
PnLs have a large drawdown of 15K and drop down to roughly 22K, before rebounding.

Position limits
Position limits are also quite straightforward and intuitive to understand. It is simply the
maximum position, long or short, that the strategy should have at any point in its trading
lifetime. It is possible to have two different position limits, one for the maximum long
position and another for the maximum short position, which can be useful, for instance,
where shorting stocks have different rules/risks associated with them than being long on
stocks does. Every unit of open position has a risk associated with it. Generally, the larger
the position a strategy puts on, the larger the risk associated with it. So, the best strategies
are the ones that can make money while getting into as small a position as possible. In
either case, before a strategy is deployed to production, it is important to quantify and
estimate what the maximum positions the strategy can get into, based on historical
performance, so that we can find out when a strategy is within its normal behavior
parameters and when it is outside of historical norms.

Managing the Risk of Algorithmic Strategies Chapter 6

[199]

Finding the maximum position is straightforward. Let's find a quick distribution of the
positions with the help of the following code:

position = results['Position']
plt.hist(position, 20)
plt.gca().set(title='Position Distribution', xlabel='Shares',
ylabel='Frequency')
plt.show()

The preceding code will generate the following output. Let's have a look at the position
distribution chart:

We can see the following from the preceding chart:

For this trading strategy, which has been applied to Google stock data, the
strategy is unlikely to have a position exceeding 200 shares and has never had a
position exceeding 250.
If it gets into position levels exceeding 250, we should be careful that the trading
strategy is still performing as expected.

Managing the Risk of Algorithmic Strategies Chapter 6

[200]

Position holding time
While analyzing positions that a trading strategy gets into, it is also important to measure
how long a position stays open until it is closed and returned to its flat position or
opposition position. The longer a position stays open, the more risk it is taking on, because
the more time there is for markets to make massive moves that can potentially go against
the open position. A long position is initiated when the position goes from being short or
flat to being long and is closed when the position goes back to flat or short. Similarly, short
positions are initiated when the position goes from being long or flat to being short and is
closed when the position goes back to flat or long.

Now, let's find the distribution of open position durations with the help of the following
code:

position_holding_times = []
current_pos = 0
current_pos_start = 0
for i in range(0, num_days):
 pos = results['Position'].iloc[i]

 # flat and starting a new position
 if current_pos == 0:
 if pos != 0:
 current_pos = pos
 current_pos_start = i
 continue

 # going from long position to flat or short position or
 # going from short position to flat or long position
 if current_pos * pos <= 0:
 current_pos = pos
 position_holding_times.append(i - current_pos_start)
 current_pos_start = i

print(position_holding_times)
plt.hist(position_holding_times, 100)
plt.gca().set(title='Position Holding Time Distribution', xlabel='Holding
time days', ylabel='Frequency')
plt.show()

Managing the Risk of Algorithmic Strategies Chapter 6

[201]

The preceding code will return the following output. Let's have a look at the position
holding time distribution plot:

So, for this strategy, we can see that the holding time is pretty distributed, with the longest
one lasting around 115 days and the shortest one lasting around 3 days.

Variance of PnLs
We need to measure how much the PnLs can vary from day to day or even week to week.
This is an important measure of risk because if a trading strategy has large swings in PnLs,
the account value is very volatile and it is hard to run a trading strategy with such a profile.
Often, we compute the Standard Deviation of returns over different days or weeks or
whatever timeframe we choose to use as our investment time horizon. Most optimization
methods try to find optimal trading performance as a balance between PnLs and the
Standard Deviation of returns.

Computing the standard deviation of returns is easy. Let's compute the standard deviation
of weekly returns, as shown in the following code:

last_week = 0
weekly_pnls = []

Managing the Risk of Algorithmic Strategies Chapter 6

[202]

for i in range(0, num_days):
 if i - last_week >= 5:
 weekly_pnls.append(pnl[i] - pnl[last_week])
 last_week = i

from statistics import stdev
print('Weekly PnL Standard Deviation:', stdev(weekly_pnls))

plt.hist(weekly_pnls, 50)
plt.gca().set(title='Weekly PnL Distribution', xlabel='$',
ylabel='Frequency')
plt.show()

The preceding code will return the following output:

Weekly PnL Standard Deviation: 1995.1834727008127

The following plot shows the weekly PnL distribution that was created from the preceding
code:

Managing the Risk of Algorithmic Strategies Chapter 6

[203]

We can see that the weekly PnLs are close to being normally distributed around a mean of
$0, which intuitively makes sense. The distribution is right skewed, which yields the
positive cumulative PnLs for this trading strategy. There are some very large profits and
losses for some weeks, but they are very rare, which is also within the expectations of what
the distribution should look like.

Sharpe ratio
Sharpe ratio is a very commonly used performance and risk metric that's used in the
industry to measure and compare the performance of algorithmic trading strategies. Sharpe
ratio is defined as the ratio of average PnL over a period of time and the PnL standard
deviation over the same period. The benefit of the Sharpe ratio is that it captures the
profitability of a trading strategy while also accounting for the risk by using the volatility of
the returns. Let's have a look at the mathematical representation:

Here, we have the following:

: PnL on the trading day.
: Number of trading days over which this Sharpe is being computed.

Another performance and risk measure similar to the Sharpe ratio is known as the Sortino
ratio, which only uses observations where the trading strategy loses money and ignores the
ones where the trading strategy makes money. The simple idea is that, for a trading
strategy, Sharpe upside moves in PnLs are a good thing, so they should not be considered
when computing the standard deviation. Another way to say the same thing would be that
only downside moves or losses are actual risk observations.

Let's compute the Sharpe and Sortino ratios for our trading strategy. We will use a week as
the time horizon for our trading strategy:

last_week = 0
weekly_pnls = []
weekly_losses = []

Managing the Risk of Algorithmic Strategies Chapter 6

[204]

for i in range(0, num_days):
 if i - last_week >= 5:
 pnl_change = pnl[i] - pnl[last_week]
 weekly_pnls.append(pnl_change)
 if pnl_change < 0:
 weekly_losses.append(pnl_change)
 last_week = i

from statistics import stdev, mean

sharpe_ratio = mean(weekly_pnls) / stdev(weekly_pnls)
sortino_ratio = mean(weekly_pnls) / stdev(weekly_losses)

print('Sharpe ratio:', sharpe_ratio)
print('Sortino ratio:', sortino_ratio)

The preceding code will return the following output:

Sharpe ratio: 0.09494748065583607
Sortino ratio: 0.11925614548156238

Here, we can see that the Sharpe ratio and the Sortino ratio are close to each other, which is
what we expect since both are risk-adjusted return metrics. The Sortino ratio is slightly
higher than the Sharpe ratio, which also makes sense since, by definition, the Sortino ratio
does not consider large increases in PnLs as being contributions to the drawdown/risk for
the trading strategy, indicating that the Sharpe ratio was, in fact, penalizing some large +ve
jumps in PnLs.

Maximum executions per period
This risk measure is an interval-based risk check. An interval-based risk is a counter that
resets after a fixed amount of time and the risk check is imposed within such a time slice.
So, while there is no final limit, it's important that the limit isn't exceeded within the time
interval that is meant to detect and avoid over-trading. The interval-based risk measure we
will inspect is maximum executions per period. This measures the maximum number of
trades allowed in a given timeframe. Then, at the end of the timeframe, the counter is reset
and starts over. This would detect and prevent a runaway strategy that buys and sells at a
very fast pace.

Let's look at the distribution of executions per period for our strategy using a week as our
timeframe, as shown here:

executions_this_week = 0
executions_per_week = []

Managing the Risk of Algorithmic Strategies Chapter 6

[205]

last_week = 0
for i in range(0, num_days):
 if results['Trades'].iloc[i] != 0:
 executions_this_week += 1

 if i - last_week >= 5:
 executions_per_week.append(executions_this_week)
 executions_this_week = 0
 last_week = i

plt.hist(executions_per_week, 10)
plt.gca().set(title='Weekly number of executions Distribution',
xlabel='Number of executions', ylabel='Frequency')
plt.show()

The code will return the following output. Let's have a look at the plot:

As we can see, for this trading strategy, it's never traded more than five times a week in the
past, which is when it trades every day of the week, which doesn't help us much. Now, let's
look at the maximum executions per month:

executions_this_month = 0
executions_per_month = []
last_month = 0
for i in range(0, num_days):

Managing the Risk of Algorithmic Strategies Chapter 6

[206]

 if results['Trades'].iloc[i] != 0:
 executions_this_month += 1

 if i - last_month >= 20:
 executions_per_month.append(executions_this_month)
 executions_this_month = 0
 last_month = i

plt.hist(executions_per_month, 20)
plt.gca().set(title='Monthly number of executions Distribution',
xlabel='Number of executions', ylabel='Frequency')
plt.show()

The preceding code will return the following output. Let's have a look at the plot:

We can observe the following from the preceding plot:

It is possible for the strategy to trade every day in a month, so this risk measure
can't really be used for this strategy.
However, this is still an important risk measure to understand and calibrate,
especially for algorithmic trading strategies that trade frequently, and especially
for HFT strategies.

Managing the Risk of Algorithmic Strategies Chapter 6

[207]

Maximum trade size
This risk metric measures what the maximum possible trade size for a single trade for the
trading strategy is. In our previous examples, we use static trade sizes, but it is not very
difficult to build a trading strategy that sends a larger order when the trading signal is
stronger and a smaller order when the trading signal is weaker. Alternatively, a strategy
can choose to liquidate a larger than normal position in one trade if it's profitable, in which
case it will send out a pretty large order. This risk measure is also very helpful when the
trading strategy is a gray box trading strategy as it prevents fat-finger errors, among other
things. We will skip implementing this risk measure here, but all we do is find a
distribution of per trade size, which should be straightforward to implement based on our
implementation of previous risk measures.

Volume limits
This risk metric measures the traded volume, which can also have an interval-based variant
that measures volume per period. This is another risk measure that is meant to detect and
prevent overtrading. For example, some of the catastrophic software implementation bugs
we discussed in this chapter could've been prevented if they had a tight volume limit in
place that warned operators about risk violations and possibly a volume limit that shut
down trading strategies. Let's observe the traded volume for our strategy, which is shown
in the following code:

traded_volume = 0
for i in range(0, num_days):
 if results['Trades'].iloc[i] != 0:
 traded_volume += abs(results['Position'].iloc[i] -
results['Position'].iloc[i-1])

print('Total traded volume:', traded_volume)

The preceding code will return the following output:

Total traded volume: 4050

In this case, the strategy behavior is as expected, that is, no overtrading is detected. We can
use this to calibrate what total traded volume to expect from this strategy when it is
deployed to live markets. If it ever trades significantly more than what is expected, we can
detect that to be an over-trading condition.

Managing the Risk of Algorithmic Strategies Chapter 6

[208]

Making a risk management algorithm
By now, we're aware of the different types of risks and factors, including the risks in a
trading strategy and the most common risk metrics for algorithmic trading strategies. Now,
let's have a look at incorporating these risk measures into our volatility adjusted mean
reversion trading strategy to make it safer before deploying it into live markets. We will set
the risk limits to 150% of the maximum achieved historically. We are doing this because it is
possible that there is a day in the future that is very different from what we've seen
historically. Let's get started:

Let's define our risk limits, which we are not allowed to breach. As we discussed1.
previously, it will be set to 150% of the historically observed maximums:

Risk limits
RISK_LIMIT_WEEKLY_STOP_LOSS = -12000 * 1.5
RISK_LIMIT_MONTHLY_STOP_LOSS = -14000 * 1.5
RISK_LIMIT_MAX_POSITION = 250 * 1.5
RISK_LIMIT_MAX_POSITION_HOLDING_TIME_DAYS = 120 * 1.5
RISK_LIMIT_MAX_TRADE_SIZE = 10 * 1.5
RISK_LIMIT_MAX_TRADED_VOLUME = 4000 * 1.5

We will maintain some variables to track and check for risk violations with the2.
help of the following code:

risk_violated = False

traded_volume = 0
current_pos = 0
current_pos_start = 0

As we can see, we have some code for computing the Simple Moving Average3.
and Standard Deviation for volatility adjustments. We will compute the fast and
slow EMAs and the APO value, which we can use as our mean reversion trading
signal:

close = data['Close']
for close_price in close:
 price_history.append(close_price)
 if len(price_history) > SMA_NUM_PERIODS: # we track at most
'time_period' number of prices
 del (price_history[0])

 sma = stats.mean(price_history)
 variance = 0 # variance is square of standard deviation
 for hist_price in price_history:
 variance = variance + ((hist_price - sma) ** 2)

Managing the Risk of Algorithmic Strategies Chapter 6

[209]

 stdev = math.sqrt(variance / len(price_history))
 stdev_factor = stdev / 15
 if stdev_factor == 0:
 stdev_factor = 1

 # This section updates fast and slow EMA and computes APO trading
signal
 if (ema_fast == 0): # first observation
 ema_fast = close_price
 ema_slow = close_price
 else:
 ema_fast = (close_price - ema_fast) * K_FAST * stdev_factor +
ema_fast
 ema_slow = (close_price - ema_slow) * K_SLOW * stdev_factor +
ema_slow

 ema_fast_values.append(ema_fast)
 ema_slow_values.append(ema_slow)

 apo = ema_fast - ema_slow
 apo_values.append(apo)

Now, before we can evaluate our signal and check whether we can send an order4.
out, we need to perform a risk check to ensure that the trade size we may attempt
is within MAX_TRADE_SIZE limits:

 if NUM_SHARES_PER_TRADE > RISK_LIMIT_MAX_TRADE_SIZE:
 print('RiskViolation NUM_SHARES_PER_TRADE',
NUM_SHARES_PER_TRADE, ' > RISK_LIMIT_MAX_TRADE_SIZE',
RISK_LIMIT_MAX_TRADE_SIZE)
 risk_violated = True

Now, the next section checks the trading signal to see if we should send orders as5.
usual. However, with an additional check, that would prevent the orders from
going out if risk limits have been violated. Let's look at the changes that we need
to make to the sell trades:

 # We will perform a sell trade at close_price if the following
conditions are met:
 # 1. The APO trading signal value is above Sell-Entry threshold
and the difference between last trade-price and current-price is
different enough.
 # 2. We are long(+ve position) and either APO trading signal
value is at or above 0 or current position is profitable enough to
lock profit.
 if (not risk_violated and
 ((apo > APO_VALUE_FOR_SELL_ENTRY * stdev_factor and

Managing the Risk of Algorithmic Strategies Chapter 6

[210]

abs(close_price - last_sell_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE
* stdev_factor) # APO above sell entry threshold, we should sell
 or
 (position > 0 and (apo >= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE / stdev_factor)))): # long from -ve APO and APO
has gone positive or position is profitable, sell to close position
 orders.append(-1) # mark the sell trade
 last_sell_price = close_price
 position -= NUM_SHARES_PER_TRADE # reduce position by the size
of this trade
 sell_sum_price_qty += (close_price * NUM_SHARES_PER_TRADE) #
update vwap sell-price
 sell_sum_qty += NUM_SHARES_PER_TRADE
 traded_volume += NUM_SHARES_PER_TRADE
 print("Sell ", NUM_SHARES_PER_TRADE, " @ ", close_price,
"Position: ", position)

Similarly, let's look at the buy trade logic:

 # We will perform a buy trade at close_price if the following
conditions are met:
 # 1. The APO trading signal value is below Buy-Entry threshold
and the difference between last trade-price and current-price is
different enough.
 # 2. We are short(-ve position) and either APO trading signal
value is at or below 0 or current position is profitable enough to
lock profit.
 elif (not risk_violated and
 ((apo < APO_VALUE_FOR_BUY_ENTRY * stdev_factor and
abs(close_price - last_buy_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE
* stdev_factor) # APO below buy entry threshold, we should buy
 or
 (position < 0 and (apo <= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE / stdev_factor)))): # short from +ve APO and
APO has gone negative or position is profitable, buy to close
position
 orders.append(+1) # mark the buy trade
 last_buy_price = close_price
 position += NUM_SHARES_PER_TRADE # increase position by the
size of this trade
 buy_sum_price_qty += (close_price * NUM_SHARES_PER_TRADE) #
update the vwap buy-price
 buy_sum_qty += NUM_SHARES_PER_TRADE
 traded_volume += NUM_SHARES_PER_TRADE
 print("Buy ", NUM_SHARES_PER_TRADE, " @ ", close_price,
"Position: ", position)
 else:
 # No trade since none of the conditions were met to buy or sell

Managing the Risk of Algorithmic Strategies Chapter 6

[211]

 orders.append(0)

 positions.append(position)

Now, we will check that, after any potential orders have been sent out and trades6.
have been made this round, we haven't breached any of our risk limits, starting
with the Maximum Position Holding Time risk limit. Let's have a look at the
following code:

 # flat and starting a new position
 if current_pos == 0:
 if position != 0:
 current_pos = position
 current_pos_start = len(positions)
 continue

 # going from long position to flat or short position or
 # going from short position to flat or long position
 if current_pos * position <= 0:
 current_pos = position
 position_holding_time = len(positions) - current_pos_start
 current_pos_start = len(positions)

 if position_holding_time >
RISK_LIMIT_MAX_POSITION_HOLDING_TIME_DAYS:
 print('RiskViolation position_holding_time',
position_holding_time, ' >
RISK_LIMIT_MAX_POSITION_HOLDING_TIME_DAYS',
RISK_LIMIT_MAX_POSITION_HOLDING_TIME_DAYS)
 risk_violated = True

We will check that the new long/short position is within the Max Position risk7.
limits, as shown in the following code:

 if abs(position) > RISK_LIMIT_MAX_POSITION:
 print('RiskViolation position', position, ' >
RISK_LIMIT_MAX_POSITION', RISK_LIMIT_MAX_POSITION)
 risk_violated = True

Next, we also check that the updated traded volume doesn't violate the allocated8.
Maximum Traded Volume risk limit:

 if traded_volume > RISK_LIMIT_MAX_TRADED_VOLUME:
 print('RiskViolation traded_volume', traded_volume, ' >
RISK_LIMIT_MAX_TRADED_VOLUME', RISK_LIMIT_MAX_TRADED_VOLUME)
 risk_violated = True

Managing the Risk of Algorithmic Strategies Chapter 6

[212]

Next, we will write some code that updates the PnLs, unchanged from before:9.

 open_pnl = 0
 if position > 0:
 if sell_sum_qty > 0:
 open_pnl = abs(sell_sum_qty) * (sell_sum_price_qty /
sell_sum_qty - buy_sum_price_qty / buy_sum_qty)
 open_pnl += abs(sell_sum_qty - position) * (close_price -
buy_sum_price_qty / buy_sum_qty)
 elif position < 0:
 if buy_sum_qty > 0:
 open_pnl = abs(buy_sum_qty) * (sell_sum_price_qty /
sell_sum_qty - buy_sum_price_qty / buy_sum_qty)
 open_pnl += abs(buy_sum_qty - position) * (sell_sum_price_qty /
sell_sum_qty - close_price)
 else:
 closed_pnl += (sell_sum_price_qty - buy_sum_price_qty)
 buy_sum_price_qty = 0
 buy_sum_qty = 0
 sell_sum_price_qty = 0
 sell_sum_qty = 0
 last_buy_price = 0
 last_sell_price = 0

 print("OpenPnL: ", open_pnl, " ClosedPnL: ", closed_pnl, "
TotalPnL: ", (open_pnl + closed_pnl))
 pnls.append(closed_pnl + open_pnl)

Now, we need to write the following code, which checks that the new Total PnL,10.
which is the sum of realized and un-realized PnLs, is not in violation of either the
Maximum allowed Weekly Stop Loss limit or the Maximum allowed Monthly
Stop Loss limit:

 if len(pnls) > 5:
 weekly_loss = pnls[-1] - pnls[-6]

 if weekly_loss < RISK_LIMIT_WEEKLY_STOP_LOSS:
 print('RiskViolation weekly_loss', weekly_loss, ' <
RISK_LIMIT_WEEKLY_STOP_LOSS', RISK_LIMIT_WEEKLY_STOP_LOSS)
 risk_violated = True

 if len(pnls) > 20:
 monthly_loss = pnls[-1] - pnls[-21]

 if monthly_loss < RISK_LIMIT_MONTHLY_STOP_LOSS:
 print('RiskViolation monthly_loss', monthly_loss, ' <
RISK_LIMIT_MONTHLY_STOP_LOSS', RISK_LIMIT_MONTHLY_STOP_LOSS)
 risk_violated = True

Managing the Risk of Algorithmic Strategies Chapter 6

[213]

Here, we have added a robust risk management system to our existing trading strategy that
can be extended to any other trading strategies we intend on deploying to live trading
markets in the future. This will protect live trading strategies from going rogue in
production or behaving outside of our expected parameters, hence providing great risk
control over our trading strategies.

Realistically adjusting risk
In the risk management system we built in the previous section, we used static risk limits
that we used for the duration of the strategy's lifetime. In practice, however, this is never
the case. When a new algorithmic trading strategy is built and deployed, it is first deployed
with very low-risk limits—usually the least amount of risk possible. This is for a variety of
reasons, the first one being to make tests and work out software implementation bugs, if
there are any. The larger the amount of new code being deployed to live markets, the
greater the risk. The other reason is to make sure strategy behavior is consistent with what
is expected based on historical performance analysis. It is usually monitored very closely by
multiple people to make sure nothing unexpected happens. Then, after a couple of days or
weeks, when initial bugs have been worked out and strategy performance is in line with
simulation performance, it is slowly scaled up to take more risks in order to generate more
profits.

Conversely, after a strategy goes through a bad patch of losses, it is often reevaluated at
reduced risk limits to check whether the trading strategy's performance has degraded from
historical expectations and if it is no longer profitable to deploy it in live markets anymore.
The obvious objective is to make as much money as possible, but achieving that requires
not only a good risk check system but also a good system to adjust risk through different
PnL profiles in the lifetime of the strategy.

A simple intuitive approach to adjusting risk in trading can be to start with low risk,
increase the risk slightly after a good performance, and reduce the risk slightly after a poor
performance. This is generally the approach that's followed by most participants: the
challenges are to quantify good/poor performance in order to increase/decrease risk and to
quantify the amount by which to increase/decrease risk.

Managing the Risk of Algorithmic Strategies Chapter 6

[214]

Let's look at a practical implementation using our previous volatility adjusted mean
reversion strategy with risk checks. We will increase the trade size and risk after a good
month and reduce the trade size and risk after a bad month by a small increment. Let's get
started:

First, we will define the limits of how small a trade size can be and what the1.
maximum allowed trade size can be over the course of the strategy's lifetime. For
this implementation, we allow no less than 1 share per trade and no more than 50
per trade. Every time we have a good/bad month, we will increase/decrease the
trade size by 2 shares. We will start very small, as we discussed previously, and
increment slowly if we continue to do well. Let's have a look at the code:

MIN_NUM_SHARES_PER_TRADE = 1
MAX_NUM_SHARES_PER_TRADE = 50
INCREMENT_NUM_SHARES_PER_TRADE = 2
num_shares_per_trade = MIN_NUM_SHARES_PER_TRADE # Beginning number
of shares to buy/sell on every trade
num_shares_history = [] # history of num-shares
abs_position_history = [] # history of absolute-position

Next, we will define similar minimum, maximum, and increment values for the2.
different risk limits. As the strategy trade size evolves over time, the risk limits
will also have to be adjusted to accommodate the increased trading size:

Risk limits and increments to risk limits when we have good/bad
months
risk_limit_weekly_stop_loss = -6000
INCREMENT_RISK_LIMIT_WEEKLY_STOP_LOSS = -12000
risk_limit_monthly_stop_loss = -15000
INCREMENT_RISK_LIMIT_MONTHLY_STOP_LOSS = -30000
risk_limit_max_position = 5
INCREMENT_RISK_LIMIT_MAX_POSITION = 3
max_position_history = [] # history of max-trade-size
RISK_LIMIT_MAX_POSITION_HOLDING_TIME_DAYS = 120 * 5
risk_limit_max_trade_size = 5
INCREMENT_RISK_LIMIT_MAX_TRADE_SIZE = 2
max_trade_size_history = [] # history of max-trade-size

last_risk_change_index = 0

Managing the Risk of Algorithmic Strategies Chapter 6

[215]

Now, let's look at the main loop trading section. We will only look at the sections3.
that are different from the previous strategy, along with risk checks. Now, the
minimum profit to close is no longer a constant but is a function of the number of
shares per trade, which varies over time:

 MIN_PROFIT_TO_CLOSE = num_shares_per_trade * 10

Let's have a look at the main trading section. It will require some changes so that4.
it adapts to the changing trade sizes. Let's look at the sell trade logic first:

 if (not risk_violated and
 ((apo > APO_VALUE_FOR_SELL_ENTRY * stdev_factor and
abs(close_price - last_sell_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE
* stdev_factor) # APO above sell entry threshold, we should sell
 or
 (position > 0 and (apo >= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE / stdev_factor)))): # long from -ve APO and APO
has gone positive or position is profitable, sell to close position
 orders.append(-1) # mark the sell trade
 last_sell_price = close_price
 if position == 0: # opening a new entry position
 position -= num_shares_per_trade # reduce position by the
size of this trade
 sell_sum_price_qty += (close_price * num_shares_per_trade) #
update vwap sell-price
 sell_sum_qty += num_shares_per_trade
 traded_volume += num_shares_per_trade
 print("Sell ", num_shares_per_trade, " @ ", close_price,
"Position: ", position)
 else: # closing an existing position
 sell_sum_price_qty += (close_price * abs(position)) # update
vwap sell-price
 sell_sum_qty += abs(position)
 traded_volume += abs(position)
 print("Sell ", abs(position), " @ ", close_price, "Position:
", position)
 position = 0 # reduce position by the size of this trade

Finally, let's look at the buy trade logic:

 elif (not risk_violated and
 ((apo < APO_VALUE_FOR_BUY_ENTRY * stdev_factor and
abs(close_price - last_buy_price) > MIN_PRICE_MOVE_FROM_LAST_TRADE
* stdev_factor) # APO below buy entry threshold, we should buy
 or
 (position < 0 and (apo <= 0 or open_pnl >
MIN_PROFIT_TO_CLOSE / stdev_factor)))): # short from +ve APO and
APO has gone negative or position is profitable, buy to close

Managing the Risk of Algorithmic Strategies Chapter 6

[216]

position
 orders.append(+1) # mark the buy trade
 last_buy_price = close_price
 if position == 0: # opening a new entry position
 position += num_shares_per_trade # increase position by the
size of this trade
 buy_sum_price_qty += (close_price * num_shares_per_trade) #
update the vwap buy-price
 buy_sum_qty += num_shares_per_trade
 traded_volume += num_shares_per_trade
 print("Buy ", num_shares_per_trade, " @ ", close_price,
"Position: ", position)
 else: # closing an existing position
 buy_sum_price_qty += (close_price * abs(position)) # update
the vwap buy-price
 buy_sum_qty += abs(position)
 traded_volume += abs(position)
 print("Buy ", abs(position), " @ ", close_price, "Position:
", position)
 position = 0 # increase position by the size of this trade
 else:
 # No trade since none of the conditions were met to buy or sell
 orders.append(0)

 positions.append(position)

After adjusting the PnLs, as shown in the preceding code, we will add an5.
implementation to analyze monthly performance and increase trade size and risk
limits if we had a good month and decrease trade size and risk limits if we had a
bad month. First, we will look at the logic to increase the trading risk after a good
month of performance:

 if len(pnls) > 20:
 monthly_pnls = pnls[-1] - pnls[-20]

 if len(pnls) - last_risk_change_index > 20:
 if monthly_pnls > 0:
 num_shares_per_trade += INCREMENT_NUM_SHARES_PER_TRADE
 if num_shares_per_trade <= MAX_NUM_SHARES_PER_TRADE:
 print('Increasing trade-size and risk')
 risk_limit_weekly_stop_loss +=
INCREMENT_RISK_LIMIT_WEEKLY_STOP_LOSS
 risk_limit_monthly_stop_loss +=
INCREMENT_RISK_LIMIT_MONTHLY_STOP_LOSS
 risk_limit_max_position +=
INCREMENT_RISK_LIMIT_MAX_POSITION
 risk_limit_max_trade_size +=

Managing the Risk of Algorithmic Strategies Chapter 6

[217]

INCREMENT_RISK_LIMIT_MAX_TRADE_SIZE
 else:
 num_shares_per_trade = MAX_NUM_SHARES_PER_TRADE

Now, let's look at some similar logic, but which reduces risk after a month of6.
poor performance:

 elif monthly_pnls < 0:
 num_shares_per_trade -= INCREMENT_NUM_SHARES_PER_TRADE
 if num_shares_per_trade >= MIN_NUM_SHARES_PER_TRADE:
 print('Decreasing trade-size and risk')
 risk_limit_weekly_stop_loss -=
INCREMENT_RISK_LIMIT_WEEKLY_STOP_LOSS
 risk_limit_monthly_stop_loss -=
INCREMENT_RISK_LIMIT_MONTHLY_STOP_LOSS
 risk_limit_max_position -=
INCREMENT_RISK_LIMIT_MAX_POSITION
 risk_limit_max_trade_size -=
INCREMENT_RISK_LIMIT_MAX_TRADE_SIZE
 else:
 num_shares_per_trade = MIN_NUM_SHARES_PER_TRADE

 last_risk_change_index = len(pnls)

Now, we need to look at the code to track the risk exposure evolution over time:7.

 # Track trade-sizes/positions and risk limits as they evolve over
time
 num_shares_history.append(num_shares_per_trade)
 abs_position_history.append(abs(position))
 max_trade_size_history.append(risk_limit_max_trade_size)
 max_position_history.append(risk_limit_max_position)

Finally, let's visualize the performance and the evolution of trade sizes and risk8.
limits over time:

data = data.assign(NumShares=pd.Series(num_shares_history,
index=data.index))
data = data.assign(MaxTradeSize=pd.Series(max_trade_size_history,
index=data.index))
data = data.assign(AbsPosition=pd.Series(abs_position_history,
index=data.index))
data = data.assign(MaxPosition=pd.Series(max_position_history,
index=data.index))

data['NumShares'].plot(color='b', lw=3., legend=True)
data['MaxTradeSize'].plot(color='g', lw=1., legend=True)
plt.legend()

Managing the Risk of Algorithmic Strategies Chapter 6

[218]

plt.show()

data['AbsPosition'].plot(color='b', lw=1., legend=True)
data['MaxPosition'].plot(color='g', lw=1., legend=True)
plt.legend()
plt.show()

The following plots are the output of the preceding code. Let's have a look at the
visualizations that we are already familiar with:

Managing the Risk of Algorithmic Strategies Chapter 6

[219]

The plot that shows buy and sell trades overlaid on Google stock prices still stay consistent
with what we've seen in the past, which shows that strategy behavior remains mostly
unchanged as it goes through phases of risk increases and decreases:

The buy and sell trades that are overlaid on APO signal value changes also stay consistent
with the expected strategy behavior, which we're used to from our previous analysis of
mean reversion trading strategy:

Managing the Risk of Algorithmic Strategies Chapter 6

[220]

As shown in the preceding plot, the position plot is especially interesting because it shows
how the magnitude of the positions increases over time. Initially, they are very small (less
than 10 shares) and slowly increase over time as strategy performance stays consistently
good and becomes quite large (more than 40 shares):

Managing the Risk of Algorithmic Strategies Chapter 6

[221]

As shown in the preceding plot, the PnL plot is also quite interesting and reflects what we
would expect it to show. It slowly increases initially when we are trading small sizes and
over time, the trading sizes increase and the PnLs increase much faster with the larger trade
size and risk limits:

As shown in the preceding plot, the trade size and max trade size risk limit evolution plot
shows that, initially, we start with 1 share per trade, then increase it slowly when we have a
positive month, then decrease it slowly when we have a negative month. Around 2016, the
strategy gets into a streak of consecutively profitable months and causes the trade size to
increase every month:

Managing the Risk of Algorithmic Strategies Chapter 6

[222]

As shown in the preceding plot, the absolute positions that the strategy puts on, as well as
the max position risk limit evolution plot, stay consistent with expectations, that is, starting
low and then increasing as we get into a streak of consecutive good months.

Summary
In this chapter, you learned about the different types of risks and risk factors. Then, we
went through the sources of risk and learned about quantifying the risks. Moving ahead,
we also learned about how to measure and manage the risks (market risk, operational risk,
and software implementation bugs) of algorithmic strategies. We incorporated a full
production-ready risk management system into our previously built trading strategy, thus
making them safe for deployment to live trading markets. Finally, we discussed and built a
practical risk scaling system that starts with very low-risk exposure and dynamically
manages the risk exposure over time as the strategy performance evolves.

In the next chapter, we will look at how the algorithm's trading interacts with the different
factors in the trading arena. You will learn how to build a trading bot from scratch. Using
the algorithm that we will build in the prior sections, you will know how to implement it,
where to connect it, and how to handle it.

4
Section 4: Building a Trading

System
In this section, you will learn how the trading algorithm we are building interacts with the
different actors in the trading arena. You will learn how to build a trading bot from scratch.
Using the algorithm constructed in the previous sections, you will learn how to implement
it, where to connect it, and how to handle it.

This section comprises the following chapters:

Chapter 7, Building a Trading System in Python
Chapter 8, Connecting to Trading Exchanges
Chapter 9, Creating a Backtester in Python

7
Building a Trading System in

Python
In the initial chapters of this book, we learned how to create a trading strategy by analyzing
historical data. In this chapter, we are going to study how to convert data analysis into real-
time software that will connect to a real exchange to actually apply the theory that you've
previously learned.

We will describe the functional components supporting the trading strategy based on the
algorithm created in the previous chapters. We will be using Python to build a small
trading system. We will use the algorithms to build a trading system capable of trading.

This chapter will cover the following topics:

Understanding the trading system
Building a trading system in Python
Designing a limit order book

Building a Trading System in Python Chapter 7

[225]

Understanding the trading system
A trading system will help you to automate your trading strategy. When you choose to
build this kind of software, you need to take the following into consideration:

Asset class: When you code, knowing which asset class will be used in your
trading system will modify the data structure of this software. Each asset class is
idiosyncratic and has its own set of features. US stocks are mainly traded on two
exchanges (NY Stock Exchange and NASDAQ). There are about 6,000 companies
(symbols) listed on these two exchanges. Unlike equities, Foreign Exchange (FX)
has six major currency pairs, six minor currency pairs, and six more exotic
currency pairs. We can add more currency pairs, but there will not be more than
100 currency pairs. However, there will be hundreds of market players (banks,
brokers).
Trading strategy type (high frequency, long-term position): Depending upon
the type of strategies, the design of the software architecture will be impacted.
High-frequency trading strategies require sending orders very rapidly. A regular
trading system for US equities will decide to send an order within microseconds.
A system trading on the Chicago Mercantile Exchange (CME) could work within
nanoseconds. Based on this observation, the technology will be critical in the
choice of designing the software. If we just refer to the programming language,
Python is not adapted to speed and we will preferably choose C++ or Java. If we
want to take a long-term position such as many days, the speed allowing a trader
to get a liquidity faster than others will not be important. A programming
language such as Python will be fast enough to reach this goal.
The number of users (the number of trading strategies): When the number of
traders increases, the number of trading strategies increases. This means that the
number of orders is higher. Before sending an order to an exchange, we need to
check the validity of the orders we are about to send: checking whether the
overall position for a given instrument has not been reached. In trading world,
we have more and more regulations moderating trading strategies. To follow
that our trading strategy respect the regulation, we will test the compliance of the
orders that we want to send. All these checks will add some calculation time. If
we have too many orders, we will need to have all these verification done
sequentially for one given instrument. If the software is not fast enough, it will
slow down the orders to go out. So having more users will require a faster
trading system.

Building a Trading System in Python Chapter 7

[226]

These parameters modify the conception of the trading system you are going to build. It is
essential to have a clear description of the requirements when you build a trading system.

Because the goal of a trading system is to support your trading ideas. The trading system
will collect the information that your trading strategy needs and be in charge of sending
orders and receiving responses from the market regarding this order. The main
functionalities will be to collect the data (most of the time this will be price updates). If the
trading strategy needs to get some quantitative data involving earnings, fed
announcements (more generally news), these news will also trigger orders. When the
trading strategy decide the direction of the position. the trading system will send orders
accordingly . The trading system will also decide which specific exchange will be the best to
get the order filled for the requested price and for the requested volume.

Gateways
A trading system collects price updates and sends orders on your behalf. In order to get to
that, you need to code all the steps that you would do if you were trading without any
trading system. If you would like to make money by buying low and selling high, you will
need to choose the product you will use to trade. Once you select this product, you want to
receive the order from the other traders. The other traders will provide you their intention
(their orders) to trade a financial asset by indicating the side, the price and the quantity. As
soon as you receive enough orders for the product that you want to trade, you can choose
the trader you are going to make a deal with. You will make your decision based on the
price of this asset. If you want to resell this asset later one, it will be important to buy it for a
low price. When you agree with a price, you will indicate the other trader that you will
want to buy for the advertised price. When the deal is done, you now own this product.
You will proceed the same way when you want to sell it at a higher price. We formalize this
way of trading using functional units:

Data handling: Collecting price updates coming from the venues you will choose
to trade with (exchanges, ECNs, dark pools). This component (called a gateway
in the following diagram) is one of the most critical of the trading system. The
task of this component is to get the book for a given instrument from an
exchange to the trading system. This component will be linked to the network
and it will get connected to exchanges receiving and sending streams to
communicate with it.

Building a Trading System in Python Chapter 7

[227]

The following diagram represents the location of the gateways in the trading system. They
are the input and the output of the trading system:

The diagram shows the following:

The venues represent traders, exchanges, ecns, and dark pools.
The getaways and venues can be linked by different ways (they are represented
using arrows).
We can use a wire, wireless network, internet, microwave, or fibers. All these
different network media have different characteristics in terms of speed, data
loss, and bandwidth.
We can observe the arrows are bidirectional for the price updates and the
orders. There is a protocol to ask for price updates.
The gateway will initiate a network connection with the venue, authenticate
itself, and subscribe to a given instrument to start receiving price updates (we
will explain this part in more detail later).

Building a Trading System in Python Chapter 7

[228]

The gateway taking care of orders also receives and send messages. When an
order is created, it is sent through the network to the venue.
If the venue receives this order, an acknowledgment of this order will be sent.
When this order has met a matching order, a trade will be sent to the trading
system.

Order book management
The main task of data handling is to replicate the limit order book from the venues into
your trading system. To combine all the different books you receive, the book builder will
be in charge of gathering the prices and sorting them for your strategies.

In the following diagram, the price updates are converted by the gateway then transferred
to the book builder. The book builder will use the books received by the gateways from the
venues and it will gather and sort all the price updates:

Building a Trading System in Python Chapter 7

[229]

In the following diagram, we use an example of an order book for a given financial
product. Since we have three venues, we observe three different books:

The diagram shows the following:

In these books, you can see for each row there is an order.
For instance, in the bid list of Venue 1, there is a trader willing to
buy 1,000 shares for $1.21. On the other side is the list of people willing to sell.
You can expect the offer (or ask) price to always be higher than the bid price.
Indeed, if you could buy for a smaller amount than you could sell, it would be
too easy to make money.
The task of the book builder is to get the three books from the three venues
collected by the gateways. The book builder regroups the three books and sort
the orders.

Building a Trading System in Python Chapter 7

[230]

Strategy
The trading strategy is the brain of the system. This is where your algorithm representing
your trading idea will be implemented. Let's have a look at the diagram:

The diagram shows the following:

The trading strategy is divided into two main components: signal and execution.
In this book, the numerous strategies we saw in the first part can be called signal.
The signals represent the indication of getting a long or a short position.
For instance, in the dual moving average crossover momentum strategy, when
the two average lines were crossing, a signal to go long or go short was
generated.
The signal component of this strategy only focuses on generating signals.
However, having the intention (a signal) does not guarantee you to get the
liquidity you are interested in. For instance, in high-frequency trading, it is
highly likely your orders will be rejected because of the speed of your trading
system.

Building a Trading System in Python Chapter 7

[231]

The execution part of the strategy will take care of handling response from the
market. This part decides what to do for any responses from the market. For
instance, what should happen when the order is rejected? You should continue
trying to get an equivalent liquidity, another price. That's an important part you
will need to focus how to implement.

Order management system
The order management system (OMS) is the component that collects the orders sent from
the strategies. The OMS keeps track of the order life cycle (creation, execution, amendment,
cancelation, and rejection). Trading strategy orders are gathered in the OMS. The OMS may
reject orders if an order is malformed or not valid (too large a quantity, wrong direction,
erroneous prices, excessive outstanding position, or order type not handled by the
exchange). When an error is detected in the OMS, the order does not go out from the
trading system. The rejection happens earlier. Consequently, the trading strategy can
respond faster than if the order was rejected by the exchange. Let's have a look at the
following diagram, which illustrates these features of the OMS:

Building a Trading System in Python Chapter 7

[232]

Critical components
Gateways, a book builder, strategies, and an OMS are the critical components of any
trading system. They gather the essential functions you need to start trading. We measure
the performance of a trading system in terms of speed by adding the processing time of all
the critical components. We start a timer when a price update gets into the entrance of the
trading system and we stop the timer when the order triggered by this price update goes
out from the system. This time is called the tick-to-trade or tick-to-order.

In the most recent systems, this time is in the order of microseconds (around 10
microseconds). When optimized with special hardware and software programming, this
time can even be reduced to nanoseconds (around 300 nanoseconds). Because we choose to
use Python to implement our trading system, the tick-to-trade of this Python system will be
in the order of milliseconds.

Non-critical components
The non-critical components are the components not directly linked with the decision to
send an order. They modify parameters, report data, and gather data. For instance, when
you design a strategy, you will have a set of parameters that you need to adjust in real time.
You need a component capable of conveying the information to the trading strategy
component. For that, we will have a component called command and control.

Building a Trading System in Python Chapter 7

[233]

Command and control
Command and control is an interface between traders and the trading system. It can be a
command-line system or a user interface receiving the commands from the traders and
sending the messages to the appropriate components. Let's have a look at the following
diagram:

As shown in the diagram, if we need to update the trading strategy parameters, the trader
can use a text field on a web-based application to specify the risk tolerance the trading
strategy can take. The number (corresponding to the tolerance limit) will be sent to the
appropriate trading strategy.

Building a Trading System in Python Chapter 7

[234]

Services
Additional components may be added to the trading system. We will talk about the
following components (it is not an exhaustive list):

Position server: This keeps track of all the trades. It updates the positions for all
the traded financial assets. For instance, if a trade is made for 100,000 EUR/USD
at a price of $1.2, the notional position will be $120,000. If a trading system
component needs the position amount for EUR/USD, it will subscribe the
position server for getting position updates. The order manager or the trading
strategy may want to know this information before allowing an order to go out.
If we want to limit the position to $200,000 for a given asset, another order to get
100,000 EUR/USD will be rejected.
Logging system: This gathers all the logs from the components and will write a
file or modify a database. A logging system helps with debugging, figuring out
causes of issues, and also just reports.
Viewers (read-only user interface view): These display the views for trading
(positions, orders, trades, task monitoring, and so on).
Control viewers (interactive user interface): These provide a way to modify
parameters and start/stop components of the trading system.
News server: This gathers news from many news companies (such as Bloomberg,
Reuters, and Ravenpack) and provides this news in real time or on demand to
the trading system.

Building a trading system in Python
In this section, we will describe how to create a trading system from scratch. We will use
Python to code this trading system but the approach is general enough to be transferred to
other languages. We will talk about the design and the best software engineering practice.
The system we will create will have the bare minimum components to trade and you may
want to extend it after this first initial implementation.

Building a Trading System in Python Chapter 7

[235]

Python is an object-oriented language. We will encapsulate the main functionalities of the
trading system into Python objects. We will have these components communicate through
channels. We will simplify the functional components by limiting this first implementation
to five main components. We will code these five components into five different files. We
will associate unit tests to all these components:

1-py: We will reproduce the behavior of liquidity providers. In this example, it
sends price updates (orders).
2-py: To simplify the design, we are removing the gateway and we will plug the
liquidity provider directly to the order book manager. This component will be in
charge of building a book.
3-py: This file contains the trading strategy code.
4-py: This contains the code for the order manager.
5-py: This replicates the behavior of a market:

Building a Trading System in Python Chapter 7

[236]

We observe from the preceding diagram that there are links between all the components.
Every link is a unidirectional communication channel. In Python, the data structure we
choose is a deque from the collections package.

We use two methods of the deque data structure:

- push: This inserts an element into the channel.
- popleft: This removes an element from the channel.

We will first describe the implementation of all these components one by one. We will
describe the public methods that will be used to use them. When you start designing a
class, you first need to know what this class is supposed to do. You will design the testing
environment that will be able verify the component behavior.

The orders and the order updates will be represented by a simple Python dictionary. Let's
have a look at the code:

ord = {
 'id': self.order_id,
 'price': price,
 'quantity': quantity,
 'side': side,
 'action': action
 }

LiquidityProvider class
The LiquidityProvider class is the simplest of all the others. The goal of this component
is to generate liquidities. Since we randomly generate liquidities, we just need to test
whether the first liquidity that is sent by the LiquidityProvider class is well formed. We
will create the generate_random_order function, which will randomly pick a side, a
price, a quantity, and an action associated to this order. We will have three kinds of actions:
create a new order, amend an order, and cancel an order. Since we are going to create a full
trading system, we will also want to test the full system by inserting the order manually.
Hence, this LiquidityProvider component will have a way to insert manual orders into
the system.

The following code describes the LiquidityProvider class. We will use a pseudo random
generator initialized by a seed. When you run your code several times, a seed will allow
you to make the random number deterministic.

Building a Trading System in Python Chapter 7

[237]

The generate_random_order function uses the lookup_orders function to determine
whether the next order that will be generated already exists:

In the code, we will create the LiquidityProvider class. The goal of this class1.
is to act as a liquidity provider or an exchange. It will send price updates to the
trading system. It will use the lp_2_gateway channel to send the price updates:

from random import randrange
from random import sample, seed

class LiquidityProvider:
 def __init__(self, lp_2_gateway=None):
 self.orders = []
 self.order_id = 0
 seed(0)
 self.lp_2_gateway = lp_2_gateway

Here, we create a utility function to look up orders in the list of orders:2.

 def lookup_orders(self,id):
 count=0
 for o in self.orders:
 if o['id'] == id:
 return o, count
 count+=1
 return None, None

The insert_manual_order function will insert orders manually into the3.
trading system. As shown, this function will be used for unit testing some
components:

 def insert_manual_order(self,order):
 if self.lp_2_gateway is None:
 print('simulation mode')
 return order
 self.lp_2_gateway.append(order.copy())

The generate_random_order function will generate orders randomly. There
will be three types of orders:

New (we will create a new order ID)
Modify (we will use the order ID of an order that was created and we will
change the quantity)
Delete (we will use the order ID and we will delete the order)

Building a Trading System in Python Chapter 7

[238]

Each time we create a new order, we will need to increment the order ID. We will4.
use thelookup_orders function as shown in the following code to check
whether the order has already been created:

 def generate_random_order(self):
 price=randrange(8,12)
 quantity=randrange(1,10)*100
 side=sample(['buy','sell'],1)[0]
 order_id=randrange(0,self.order_id+1)
 o=self.lookup_orders(order_id)

 new_order=False
 if o is None:
 action='new'
 new_order=True
 else:
 action=sample(['modify','delete'],1)[0]

 ord = {
 'id': self.order_id,
 'price': price,
 'quantity': quantity,
 'side': side,
 'action': action
 }

 if not new_order:
 self.order_id+=1
 self.orders.append(ord)

 if not self.lp_2_gateway:
 print('simulation mode')
 return ord
 self.lp_2_gateway.append(ord.copy())

We test whether the LiquidityProvider class works correctly by using unit5.
testing. Python has the unittest module . As shown, we will create
the TestMarketSimulator class, inheriting from TestCase:

import unittest
 from chapter7.LiquidityProvider import LiquidityProvider

 class TestMarketSimulator(unittest.TestCase):
 def setUp(self):
 self.liquidity_provider = LiquidityProvider()

Building a Trading System in Python Chapter 7

[239]

 def test_add_liquidity(self):
 self.liquidity_provider.generate_random_order()
self.assertEqual(self.liquidity_provider.orders[0]['id'],0)
self.assertEqual(self.liquidity_provider.orders[0]['side'], 'buy')
self.assertEqual(self.liquidity_provider.orders[0]['quantity'],
700)
self.assertEqual(self.liquidity_provider.orders[0]['price'], 11)
OrderBook class

As shown, we have coded the test_add_liquidity function:

This function tests whether the random generation of a liquidity functions by
comparing values generated by this function to expected values.
We used the functions belonging to this TestCase class to make a test fail if the
returned values are not the expected ones.
This code will generate an order and test the order characteristics. If one field
value is not the expected one, the unit test will fail.

Strategy class
This class represents the trading strategy based on top of the book changes. This trading
strategy will create an order when the top of the book is crossed. This means when there is
a potential arbitrage situation. When the bid value is higher than the ask value, we can send
an order to buy and sell at the same time and make money out of these two transactions.

This class is divided into two parts:

Signal part: This part handles the trading signal. In this example, a signal will be
triggered when the top of the book is crossed.
Execution part: This part handles the execution of the orders. It will be
responsible of managing the order life cycle.

The following are the steps for the strategy class:

As shown in the following code, we will create the TradingStrategy class. This1.
class will have three parameters. They are references to the three communication
channels. One is taking the book events form the order book, the two others are
made to send orders and receive order updates from the market:

class TradingStrategy:
 def __init__(self, ob_2_ts, ts_2_om, om_2_ts):
 self.orders = []
 self.order_id = 0

Building a Trading System in Python Chapter 7

[240]

 self.position = 0
 self.pnl = 0
 self.cash = 10000
 self.current_bid = 0
 self.current_offer = 0
 self.ob_2_ts = ob_2_ts
 self.ts_2_om = ts_2_om
 self.om_2_ts = om_2_ts

We will code two functions to handle the book events from the order book as2.
shown in the code; handle_input_from_bb checks whether there are book
events in deque ob_2_ts and will call the handle_book_event function:

def handle_input_from_bb(self,book_event=None):
 if self.ob_2_ts is None:
 print('simulation mode')
 self.handle_book_event(book_event)
 else:
 if len(self.ob_2_ts)>0:
 be=self.handle_book_event(self.ob_2_ts.popleft())
 self.handle_book_event(be)

 def handle_book_event(self,book_event):
 if book_event is not None:
 self.current_bid = book_event['bid_price']
 self.current_offer = book_event['offer_price']

 if self.signal(book_event):
 self.create_orders(book_event
 ,min(book_event['bid_quantity'],
 book_event['offer_quantity']))
 self.execution()

The handle_book_event function calls the function signal to check whether
there is a signal to send an order.

In this case, the signal verifies whether the bid price is higher than the ask price.3.
If this condition is verified, this function returns True. The
handle_book_event function in the code will create an order by calling the
create_orders function:

def signal(self, book_event):
 if book_event is not None:
 if book_event["bid_price"]>\
 book_event["offer_price"]:
 if book_event["bid_price"]>0 and\
 book_event["offer_price"]>0:

Building a Trading System in Python Chapter 7

[241]

 return True
 else:
 return False
 else:
 return False

The create_orders function from the code creates two orders. When we have4.
an arbitrage situation, we must trade fast. Therefore, the two orders must be
created simultaneously. This function increments the order ID for any created
orders. This order ID will be local to the trading strategy:

def create_orders(self,book_event,quantity):
 self.order_id+=1
 ord = {
 'id': self.order_id,
 'price': book_event['bid_price'],
 'quantity': quantity,
 'side': 'sell',
 'action': 'to_be_sent'
 }
 self.orders.append(ord.copy())

 price=book_event['offer_price']
 side='buy'
 self.order_id+=1
 ord = {
 'id': self.order_id,
 'price': book_event['offer_price'],
 'quantity': quantity,
 'side': 'buy',
 'action': 'to_be_sent'
 }
 self.orders.append(ord.copy())

The function execution will take care of processing orders in their whole order life
cycle. For instance, when an order is created, its status is new. Once the order has
been sent to the market, the market will respond by acknowledging the order or
reject the order. If the other is rejected, this function will remove the order from
the list of outstanding orders.

When an order is filled, it means this order has been executed. Once an order is5.
filled, the strategy must update the position and the PnL with the help of the
code:

def execution(self):
 orders_to_be_removed=[]
 for index, order in enumerate(self.orders):

Building a Trading System in Python Chapter 7

[242]

 if order['action'] == 'to_be_sent':
 # Send order
 order['status'] = 'new'
 order['action'] = 'no_action'
 if self.ts_2_om is None:
 print('Simulation mode')
 else:
 self.ts_2_om.append(order.copy())
 if order['status'] == 'rejected':
 orders_to_be_removed.append(index)
 if order['status'] == 'filled':
 orders_to_be_removed.append(index)
 pos = order['quantity'] if order['side'] == 'buy' else
-order['quantity']
 self.position+=pos
 self.pnl-=pos * order['price']
 self.cash -= pos * order['price']
 for order_index in sorted(orders_to_be_removed,reverse=True):
 del (self.orders[order_index])

The handle_response_from_om and handle_market_response6.
functions will collect the information from the order manager (collecting
information from the market) as shown in the following code:

 def handle_response_from_om(self):
 if self.om_2_ts is not None:
 self.handle_market_response(self.om_2_ts.popleft())
 else:
 print('simulation mode')

 def handle_market_response(self, order_execution):
 order,_=self.lookup_orders(order_execution['id'])
 if order is None:
 print('error not found')
 return
 order['status']=order_execution['status']
 self.execution()

The lookup_orders function in the following code checks whether an order7.
exists in the data structure gathering all the orders and return this order:

def lookup_orders(self,id):
 count=0
 for o in self.orders:
 if o['id'] == id:
 return o, count
 count+=1
 return None, None

Building a Trading System in Python Chapter 7

[243]

Testing the trading strategy is critical. You need to check whether the trading
strategy will place the correct orders. The test_receive_top_of_book test case
verifies whether the book event is correctly handled by the trading strategy.
The test_rejected_order and test_filled_order test cases verify
whether a response from the market is correctly handled.

The code will create a setUp function, being called each time we run a test. We8.
will create TradingStrategy each time we invoke a test. This way of doing it
increases the reuse of the same code:

import unittest
from chapter7.TradingStrategy import TradingStrategy

class TestMarketSimulator(unittest.TestCase):
 def setUp(self):
 self.trading_strategy= TradingStrategy()

The first unit test that we perform for a trading strategy is to validate that the
book event sent by the book is received correctly.

We will create a book event manually and we will use the9.
handle_book_event function. We are going to validate the fact that the trading
strategy behaves the way it is supposed to by checking whether the orders
produced were expected. Let's have a look at the code:

 def test_receive_top_of_book(self):
 book_event = {
 "bid_price" : 12,
 "bid_quantity" : 100,
 "offer_price" : 11,
 "offer_quantity" : 150
 }
 self.trading_strategy.handle_book_event(book_event)
 self.assertEqual(len(self.trading_strategy.orders), 2)
 self.assertEqual(self.trading_strategy.orders[0]['side'],
'sell')
 self.assertEqual(self.trading_strategy.orders[1]['side'],
'buy')
 self.assertEqual(self.trading_strategy.orders[0]['price'],
12)
 self.assertEqual(self.trading_strategy.orders[1]['price'],
11)
self.assertEqual(self.trading_strategy.orders[0]['quantity'], 100)
self.assertEqual(self.trading_strategy.orders[1]['quantity'], 100)
self.assertEqual(self.trading_strategy.orders[0]['action'],
'no_action')

Building a Trading System in Python Chapter 7

[244]

self.assertEqual(self.trading_strategy.orders[1]['action'],
'no_action')

The second test performed is to verify whether the trading strategy receives the
market response coming from the order manager.

We will create a market response indicating a rejection of a given order. We will10.
also check whether the trading strategy removes this order from the list of orders
belonging to the trading strategy:

 def test_rejected_order(self):
 self.test_receive_top_of_book()
 order_execution = {
 'id': 1,
 'price': 12,
 'quantity': 100,
 'side': 'sell',
 'status' : 'rejected'
 }
 self.trading_strategy.handle_market_response(order_execution)
 self.assertEqual(self.trading_strategy.orders[0]['side'], 'buy')
 self.assertEqual(self.trading_strategy.orders[0]['price'], 11)
 self.assertEqual(self.trading_strategy.orders[0]['quantity'], 100)
 self.assertEqual(self.trading_strategy.orders[0]['status'], 'new')

The last part, we need to test the behavior of the trading strategy when the order11.
is filled. We will need to update the position, the pnl, and the cash that we have
to invest as shown in the following code:

 def test_filled_order(self):
 self.test_receive_top_of_book()
 order_execution = {
 'id': 1,
 'price': 11,
 'quantity': 100,
 'side': 'sell',
 'status' : 'filled'
 }
 self.trading_strategy.handle_market_response(order_execution)
 self.assertEqual(len(self.trading_strategy.orders),1)

 order_execution = {
 'id': 2,
 'price': 12,
 'quantity': 100,
 'side': 'buy',
 'status' : 'filled'

Building a Trading System in Python Chapter 7

[245]

 }
 self.trading_strategy.handle_market_response(order_execution)
 self.assertEqual(self.trading_strategy.position, 0)
 self.assertEqual(self.trading_strategy.cash, 10100)
 self.assertEqual(self.trading_strategy.pnl, 100)

Next, we will look at working with the OrderManager class.

OrderManager class
The purpose of the order manager is to gather the orders from all the trading strategies and
to communicate this order with the market. It will check the validity of the orders and can
also keep track of the overall positions and PnL. It can be a safeguard against mistakes
introduced in trading strategies.

This component is the interface between the trading strategies and the market. It will be the
only component using two inputs and two outputs. The constructor of this class will take
four arguments representing these channels:

class OrderManager:
 def __init__(self,ts_2_om = None, om_2_ts = None,
 om_2_gw=None,gw_2_om=None):
 self.orders=[]
 self.order_id=0
 self.ts_2_om = ts_2_om
 self.om_2_gw = om_2_gw
 self.gw_2_om = gw_2_om
 self.om_2_ts = om_2_ts

The four following functions will help with reading data from the channels and it will call
the proper functions.

The handle_input_from_ts function checks whether the ts_2_om channel has been
created. If the channel has not been created, it means that we will use the class for unit
testing only. To get new orders into the OrderManager system, we check whether the size
of the ts_2_om channel is higher than 0. If there is an order in the channel, we remove this
order and we call the handle_order_from_tradinig_strategy function:

def handle_input_from_ts(self):
 if self.ts_2_om is not None:
 if len(self.ts_2_om)>0:
self.handle_order_from_trading_strategy(self.ts_2_om.popleft())
 else:
 print('simulation mode')

Building a Trading System in Python Chapter 7

[246]

The handle_order_from_trading_strategy function handles the new order coming
from the trading strategies. For now, the OrderManager class will just get a copy of the
order and store this order into a list of orders:

 def handle_order_from_trading_strategy(self,order):
 if self.check_order_valid(order):
 order=self.create_new_order(order).copy()
 self.orders.append(order)
 if self.om_2_gw is None:
 print('simulation mode')
 else:
 self.om_2_gw.append(order.copy())

Once we take care of the order side, we are going to take care of the market response. For
this, we will use the same method we used for the two prior functions. The
handle_input_from_market function checks whether the gw_2_om channel exists. If
that's the case, the function reads the market response object coming from the market and
calls the handle_order_from_gateway function:

def handle_input_from_market(self):
 if self.gw_2_om is not None:
 if len(self.gw_2_om)>0:
 self.handle_order_from_gateway(self.gw_2_om.popleft())
 else:
 print('simulation mode')

The handle_order_from_gateway function will look up in the list of orders created by
the handle_order_from_trading_strategy function. If the market response
corresponds to an order in the list, it means that this market response is valid. We will be
able to change the state of this order. If the market response doesn't find a specific order, it
means that there is a problem in the exchange between the trading system and the market.
We will need to raise an error:

 def handle_order_from_gateway(self,order_update):
 order=self.lookup_order_by_id(order_update['id'])
 if order is not None:
 order['status']=order_update['status']
 if self.om_2_ts is not None:
 self.om_2_ts.append(order.copy())
 else:
 print('simulation mode')
 self.clean_traded_orders()
 else:
 print('order not found')

Building a Trading System in Python Chapter 7

[247]

The check_order_valid function will perform regular checks on an order. In this
example, we will check that the quantity and price are not negative. You may consider
adding more code and to check the position, PnL, or anything you consider important for
your trading strategy:

def check_order_valid(self,order):
 if order['quantity'] < 0:
 return False
 if order['price'] < 0:
 return False
 return True

The create_new_order, lookup_order_by_id, and clean_traded_orders
functions will create an order based on the order sent by the trading strategy, which has a
unique order ID. Indeed, each trading strategy can have its own local order ID. It is
important that the orders we send to the market have an unique order ID. The second
function will help with looking up the order from the list of outstanding orders. The last
function will clean the orders that have been rejected, filled, or canceled.

The create_new_order function will create a dictionary to store the order characteristics:

 def create_new_order(self,order):
 self.order_id += 1
 neworder = {
 'id': self.order_id,
 'price': order['price'],
 'quantity': order['quantity'],
 'side': order['side'],
 'status': 'new',
 'action': 'New'
 }
 return neworder

The lookup_order_by_id function will return a reference to the order by looking up by
order ID:

def lookup_order_by_id(self,id):
 for i in range(len(self.orders)):
 if self.orders[i]['id']==id:
 return self.orders[i]
 return None

The clean_traded_orders function will remove from the list of orders all the orders that
have been filled:

def clean_traded_orders(self):
 order_offsets=[]

Building a Trading System in Python Chapter 7

[248]

 for k in range(len(self.orders)):
 if self.orders[k]['status'] == 'filled':
 order_offsets.append(k)
 if len(order_offsets):
 for k in sorted(order_offsets,reverse=True):
 del (self.orders[k])

Since the OrderManager component is critical for the safety of your trading, we need to
have exhaustive unit testing to ensure that no strategy will damage your gain, and prevent
you from incurring losses:

import unittest
 from chapter7.OrderManager import OrderManager

 class TestOrderBook(unittest.TestCase):

 def setUp(self):
 self.order_manager = OrderManager()

The test_receive_order_from_trading_strategy test verifies whether an order is
correctly received by the order manager. First, we create an order, order1, and we call the
handle_order_from_trading_strategy function. Since the trading strategy creates two
orders (stored in the channel ts_2_om), we call the
test_receive_order_from_trading_strategy function twice. The order manager will
then generate two orders. In this example, since we only have one strategy, when the orders
are created by the order manager, they will have the same order IDs as the trading strategy
created:

 def test_receive_order_from_trading_strategy(self):
 order1 = {
 'id': 10,
 'price': 219,
 'quantity': 10,
 'side': 'bid',
 }
 self.order_manager.handle_order_from_trading_strategy(order1)
 self.assertEqual(len(self.order_manager.orders),1)
 self.order_manager.handle_order_from_trading_strategy(order1)
 self.assertEqual(len(self.order_manager.orders),2)
 self.assertEqual(self.order_manager.orders[0]['id'],1)
 self.assertEqual(self.order_manager.orders[1]['id'],2)

Building a Trading System in Python Chapter 7

[249]

To prevent a malformed order from being sent to the market, the
test_receive_order_from_trading_strategy_error test checks whether an order
created with a negative price is rejected:

 def test_receive_order_from_trading_strategy_error(self):
 order1 = {
 'id': 10,
 'price': -219,
 'quantity': 10,
 'side': 'bid',
 }
 self.order_manager.handle_order_from_trading_strategy(order1)
 self.assertEqual(len(self.order_manager.orders),0)

The following test, test_receive_from_gateway_filled, confirms a market response
has been propagated by the order manager:

 def test_receive_from_gateway_filled(self):
 self.test_receive_order_from_trading_strategy()
 orderexecution1 = {
 'id': 2,
 'price': 13,
 'quantity': 10,
 'side': 'bid',
 'status' : 'filled'
 }
 self.order_manager.handle_order_from_gateway(orderexecution1)
 self.assertEqual(len(self.order_manager.orders), 1)

 def test_receive_from_gateway_acked(self):
 self.test_receive_order_from_trading_strategy()
 orderexecution1 = {
 'id': 2,
 'price': 13,
 'quantity': 10,
 'side': 'bid',
 'status' : 'acked'
 }
 self.order_manager.handle_order_from_gateway(orderexecution1)
 self.assertEqual(len(self.order_manager.orders), 2)
 self.assertEqual(self.order_manager.orders[1]['status'], 'acked')

Building a Trading System in Python Chapter 7

[250]

MarketSimulator class
The MarketSimulator class is central in validating your trading strategy. You will use this
class to fix the market assumptions. For instance, you can indicate the rejection rate and
which type of orders can be accepted, and you can set the trading rules belonging to the
exchange you are targeting. In our example, the market simulator acknowledges and fills
all new orders.

When creating this class, the constructor will have two channels. One will get input from
the order manager and the other will give the response back to the order manager:

class MarketSimulator:
 def __init__(self, om_2_gw=None,gw_2_om=None):
 self.orders = []
 self.om_2_gw = om_2_gw
 self.gw_2_om = gw_2_om

The lookup_orders function will help to look up outstanding orders:

 def lookup_orders(self,order):
 count=0
 for o in self.orders:
 if o['id'] == order['id']:
 return o, count
 count+=1
 return None, None

The handle_order_from_gw function will collect the order from the gateway (the order
manager) through the om_2_gw channel:

 def handle_order_from_gw(self):
 if self.om_2_gw is not None:
 if len(self.om_2_gw)>0:
 self.handle_order(self.om_2_gw.popleft())
 else:
 print('simulation mode')

The trading rule that we use in the handle_order function will accept any new orders. If
an order already has the same order ID, the order will be dropped. If the order manager
cancels or amends an order, the order is automatically canceled and amended. The logic
you will code in this function will be adapted to your trading:

 def handle_order(self, order):
 o,offset=self.lookup_orders(order)
 if o is None:
 if order['action'] == 'New':

Building a Trading System in Python Chapter 7

[251]

 order['status'] = 'accepted'
 self.orders.append(order)
 if self.gw_2_om is not None:
 self.gw_2_om.append(order.copy())
 else:
 print('simulation mode')
 return
 elif order['action'] == 'Cancel' or order['action'] ==
'Amend':
 print('Order id - not found - Rejection')
 if self.gw_2_om is not None:
 self.gw_2_om.append(order.copy())
 else:
 print('simulation mode')
 return
 elif o is not None:
 if order['action'] == 'New':
 print('Duplicate order id - Rejection')
 return
 elif order['action'] == 'Cancel':
 o['status']='cancelled'
 if self.gw_2_om is not None:
 self.gw_2_om.append(o.copy())
 else:
 print('simulation mode')
 del (self.orders[offset])
 print('Order cancelled')
 elif order['action'] == 'Amend':
 o['status'] = 'accepted'
 if self.gw_2_om is not None:
 self.gw_2_om.append(o.copy())
 else:
 print('simulation mode')
 print('Order amended')

 def fill_all_orders(self):
 orders_to_be_removed = []
 for index, order in enumerate(self.orders):
 order['status'] = 'filled'
 orders_to_be_removed.append(index)
 if self.gw_2_om is not None:
 self.gw_2_om.append(order.copy())
 else:
 print('simulation mode')
 for i in sorted(orders_to_be_removed,reverse=True):
 del(self.orders[i])

Building a Trading System in Python Chapter 7

[252]

The unit test will ensure that the trading rules are verified:

import unittest
 from chapter7.MarketSimulator import MarketSimulator

 class TestMarketSimulator(unittest.TestCase):

 def setUp(self):
 self.market_simulator = MarketSimulator()

 def test_accept_order(self):
 self.market_simulator
 order1 = {
 'id': 10,
 'price': 219,
 'quantity': 10,
 'side': 'bid',
 'action' : 'New'
 }
 self.market_simulator.handle_order(order1)
 self.assertEqual(len(self.market_simulator.orders),1)
 self.assertEqual(self.market_simulator.orders[0]['status'],
'accepted')

 def test_accept_order(self):
 self.market_simulator
 order1 = {
 'id': 10,
 'price': 219,
 'quantity': 10,
 'side': 'bid',
 'action' : 'Amend'
 }
 self.market_simulator.handle_order(order1)
 self.assertEqual(len(self.market_simulator.orders),0)

TestTradingSimulation class
The goal of the TestTradingSimulation class is to create the full trading system by
gathering all the prior critical components together.

This class checks whether, for a given input, we have the expected output. Additionally, we
will test whether the PnL of the trading strategy has been updated accordingly.

Building a Trading System in Python Chapter 7

[253]

We will first need to create all the deques representing the communication channels within
the trading systems:

import unittest
 from chapter7.LiquidityProvider import LiquidityProvider
 from chapter7.TradingStrategy import TradingStrategy
 from chapter7.MarketSimulator import MarketSimulator
 from chapter7.OrderManager import OrderManager
 from chapter7.OrderBook import OrderBook
 from collections import deque

 class TestTradingSimulation(unittest.TestCase):
 def setUp(self):
 self.lp_2_gateway=deque()
 self.ob_2_ts = deque()
 self.ts_2_om = deque()
 self.ms_2_om = deque()
 self.om_2_ts = deque()
 self.gw_2_om = deque()
 self.om_2_gw = deque()

We instantiate all the critical components of the trading system:

 self.lp=LiquidityProvider(self.lp_2_gateway)
 self.ob=OrderBook(self.lp_2_gateway, self.ob_2_ts)
 self.ts=TradingStrategy(self.ob_2_ts,self.ts_2_om,self.om_2_ts)
 self.ms=MarketSimulator(self.om_2_gw,self.gw_2_om)
 self.om=OrderManager(self.ts_2_om,
self.om_2_ts,self.om_2_gw,self.gw_2_om)

We test whether. by adding two liquidities having a bid higher than the offer, we will
create two orders to arbitrage these two liquidities. We will check whether the components
function correctly by checking what they push to their respective channels. Finally, since
we will buy 10 liquidities at a price of 218 and we sell at a price of 219, the PnL should be
10:

 def test_add_liquidity(self):
 # Order sent from the exchange to the trading system
 order1 = {
 'id': 1,
 'price': 219,
 'quantity': 10,
 'side': 'bid',
 'action': 'new'
 }
 self.lp.insert_manual_order(order1)
 self.assertEqual(len(self.lp_2_gateway),1)

Building a Trading System in Python Chapter 7

[254]

 self.ob.handle_order_from_gateway()
 self.assertEqual(len(self.ob_2_ts), 1)
 self.ts.handle_input_from_bb()
 self.assertEqual(len(self.ts_2_om), 0)
 order2 = {
 'id': 2,
 'price': 218,
 'quantity': 10,
 'side': 'ask',
 'action': 'new'
 }
 self.lp.insert_manual_order(order2.copy())
 self.assertEqual(len(self.lp_2_gateway),1)
 self.ob.handle_order_from_gateway()
 self.assertEqual(len(self.ob_2_ts), 1)
 self.ts.handle_input_from_bb()
 self.assertEqual(len(self.ts_2_om), 2)
 self.om.handle_input_from_ts()
 self.assertEqual(len(self.ts_2_om), 1)
 self.assertEqual(len(self.om_2_gw), 1)
 self.om.handle_input_from_ts()
 self.assertEqual(len(self.ts_2_om), 0)
 self.assertEqual(len(self.om_2_gw), 2)
 self.ms.handle_order_from_gw()
 self.assertEqual(len(self.gw_2_om), 1)
 self.ms.handle_order_from_gw()
 self.assertEqual(len(self.gw_2_om), 2)
 self.om.handle_input_from_market()
 self.om.handle_input_from_market()
 self.assertEqual(len(self.om_2_ts), 2)
 self.ts.handle_response_from_om()
 self.assertEqual(self.ts.get_pnl(),0)
 self.ms.fill_all_orders()
 self.assertEqual(len(self.gw_2_om), 2)
 self.om.handle_input_from_market()
 self.om.handle_input_from_market()
 self.assertEqual(len(self.om_2_ts), 3)
 self.ts.handle_response_from_om()
 self.assertEqual(len(self.om_2_ts), 2)
 self.ts.handle_response_from_om()
 self.assertEqual(len(self.om_2_ts), 1)
 self.ts.handle_response_from_om()
 self.assertEqual(len(self.om_2_ts), 0)
 self.assertEqual(self.ts.get_pnl(),10)

Building a Trading System in Python Chapter 7

[255]

Designing a limit order book
A limit order book is a component that gathers all the orders and sorts them in a way that
facilitates the work of the trading strategy. The order book is used by exchanges to
maintain sell and buy orders. When we trade, we need to get the book of the exchange to
know which prices are the best or just to have a view on the market. Because the exchange
is located on another machine, we will need to use the network to communicate changes on
the exchange book. For that, we have two methods:

The first method is to send the whole book. You will realize that this method
would be very slow, especially when the exchanges is as large as NYSE or
NASDAQ. This solution is not scalable.
The second method is to first send the whole book (like the first method), but
then instead of sending the whole book each time there is an update, we just
send the update. This update will be the order (from the other traders placing
orders on the exchange). They will arrive by time increments as small as
microseconds.

The trading strategy needs to make a decision very rapidly (buying, selling, or holding
stocks). Since the book provides the required information to the trading strategies to make
the decision, it needs to be fast. An order book is, in reality, a book for the orders coming
from buyers and a book for the orders from sellers. The highest bid and the lowest offer
prices will have priority. In a situation where there is more than one bid with the same
price competing for the best price, the time stamp will be used to sort out which one should
be sold. The timestamp that is the earliest will be executed first.

The operations we will need to handle for the life cycle of the orders are the following:

Insertion: An insertion will add an order to the book. This operation should be
fast. The algorithm and data structure chosen for this operation are critical,
because we need to have the book of bids and offers sorted at any time. We will
have to privilege a data structure allowing a complexity of O(1) or O(log n) to
insert a new order.
Amendment/modification: An amendment will look up the order in the book by
using the order ID. This operation should also be with the same complexity as
the insertion.
Cancelation: A cancelation will allow an order to be removed from the book by
using the order ID.

Building a Trading System in Python Chapter 7

[256]

As you can understand, the choice of data structure and the algorithm associated with this
data structure will change the performance a lot. If you are building a high-frequency
trading system, you will need to choose accordingly. Since we are using Python and we are
not implementing a high-frequency trading system, we will then use a list to simplify the
coding part. This list will represent the orders and this list will be sorted for both sides (for
the book of bids and for the book of offers).

We will build an OrderBook class; this class will collect orders from
LiquidityProvider and sort the orders and create book events. The book events in a
trading system are preset events and these events can be anything a trader thinks it is
worth knowing. For instance, in this implementation, we choose to generate a book event
each time there is a change on the top of the book (any changes in the first level of the book
will create an event):

We choose to code OrderBook by having a list for asks and bids. The constructor1.
has two optional arguments, which are the two channels to receive orders and
send book events:

class OrderBook:
 def __init__(self,gt_2_ob = None,ob_to_ts = None):
 self.list_asks = []
 self.list_bids = []
 self.gw_2_ob=gt_2_ob
 self.ob_to_ts = ob_to_ts
 self.current_bid = None
 self.current_ask = None

We will write a function, handle_order_from_gateway, which will receive the2.
orders from the liquidity provider. Let's have a look at the code:

def handle_order_from_gateway(self,order = None):
 if self.gw_2_ob is None:
 print('simulation mode')
 self.handle_order(order)
 elif len(self.gw_2_ob)>0:
 order_from_gw=self.gw_2_ob.popleft()
 self.handle_order(order_from_gw)

Building a Trading System in Python Chapter 7

[257]

Next, as shown, we will write a function to check whether the3.
gw_2_ob channel has been defined. If the channel has been
instantiated, handle_order_from_gateway will pop the order from the top
of deque gw_2_ob and will call the handle_order function to process the order
for a given action:

def handle_order(self,o):
 if o['action']=='new':
 self.handle_new(o)
 elif o['action']=='modify':
 self.handle_modify(o)
 elif o['action']=='delete':
 self.handle_delete(o)
 else:
 print('Error-Cannot handle this action')

 return self.check_generate_top_of_book_event()

In the code, handle_order calls either handle_modify, handle_delete,
or handle_new.

The handle_modify function modifies the order from the book by using the
order given as an argument of this function.
The handle_delete function removes an order from the book by using the order
given as an argument of this function. The handle_new function adds an order to
the appropriate list, self.list_bids and self.list_asks .

The code shows the implementation of the insertion of a new order. In this code,
we check the order side. Depending on the side, we will choose the list of the bids
or the list of asks:

 if o['side']=='bid':
 self.list_bids.append(o)
 self.list_bids.sort(key=lambda x: x['price'],reverse=True)
 elif o['side']=='ask':
 self.list_asks.append(o)
 self.list_asks.sort(key=lambda x: x['price'])

Building a Trading System in Python Chapter 7

[258]

As shown in the code, we will then implement the handle_modify function to4.
manage the amendment. This function searches in the list of orders if the order
exists. If that's the case, we will modify the quantity by the new quantity. This
operation will be possible only if we reduce the quantity of the order:

def handle_modify(self,o):
 order=self.find_order_in_a_list(o)
 if order['quantity'] > o['quantity']:
 order['quantity'] = o['quantity']
 else:
 print('incorrect size')
 return None

The handle_delete function will manage the order cancelation. As shown in5.
the code, we will remove the orders from the list of orders by checking
whether the order exists with the order ID:

 def handle_delete(self,o):
 lookup_list = self.get_list(o)
 order = self.find_order_in_a_list(o,lookup_list)
 if order is not None:
 lookup_list.remove(order)
 return None

The following two functions will help with finding an order by using the order
ID.

The get_list function in the code will help to find the side (which order book)6.
contains the order:

def get_list(self,o):
 if 'side' in o:
 if o['side']=='bid':
 lookup_list = self.list_bids
 elif o['side'] == 'ask':
 lookup_list = self.list_asks
 else:
 print('incorrect side')
 return None
 return lookup_list
 else:
 for order in self.list_bids:
 if order['id']==o['id']:
 return self.list_bids
 for order in self.list_asks:
 if order['id'] == o['id']:

Building a Trading System in Python Chapter 7

[259]

 return self.list_asks
 return None

The find_order_in_a_list function will return a reference to the order if this7.
order exists:

 def find_order_in_a_list(self,o,lookup_list = None):
 if lookup_list is None:
 lookup_list = self.get_list(o)
 if lookup_list is not None:
 for order in lookup_list:
 if order['id'] == o['id']:
 return order
 print('order not found id=%d' % (o['id']))
 return None

The following two functions will help with creating the book events. The book
events as defined in the check_generate_top_of_book_event function will be
created by having the top of the book changed.

As shown, the create_book_event function creates a dictionary representing a8.
book event. In this example, a book event will be given to the trading strategy to
indicate what change was made at the top of the book level:

def create_book_event(self,bid,offer):
 book_event = {
 "bid_price": bid['price'] if bid else -1,
 "bid_quantity": bid['quantity'] if bid else -1,
 "offer_price": offer['price'] if offer else -1,
 "offer_quantity": offer['quantity'] if offer else -1
 }
 return book_event

As shown, the check_generate_top_of_book_event function will create a9.
book event when the top of the book has changed. When the price or the quantity
for the best bid or offer has changed, we will inform the trading strategies that
there is a change at the top of the book:

 def check_generate_top_of_book_event(self):
 tob_changed = False
 if not self.list_bids:
 if self.current_bid is not None:
 tob_changed = True
 # if top of book change generate an event
 if not self.current_bid:
 if self.current_bid != self.list_bids[0]:
 tob_changed=True

Building a Trading System in Python Chapter 7

[260]

 self.current_bid=self.list_bids[0] \
 if self.list_bids else None

 if not self.current_ask:
 if not self.list_asks:
 if self.current_ask is not None:
 tob_changed = True
 elif self.current_ask != self.list_asks[0]:
 tob_changed = True
 self.current_ask = self.list_asks[0] \
 if self.list_asks else None

 if tob_changed:
be=self.create_book_event(self.current_bid,self.current_ask)
 if self.ob_to_ts is not None:
 self.ob_to_ts.append(be)
 else:
 return be

When we test the order book, we need to test the following functionalities:

Adding a new order
Modifying a new order
Deleting an order
Creating a book event

This code will start creating the unit test for the Order Book. We will use the
function setUp called for every test cases and create an reference to the Order
Book for all the test cases.

import unittest
 from chapter7.OrderBook import OrderBook

 class TestOrderBook(unittest.TestCase):

 def setUp(self):
 self.reforderbook = OrderBook()

Building a Trading System in Python Chapter 7

[261]

We will create a function to verify if the order insertion works. The book must10.
have the list of asks and the list of bids sorted:

 def test_handlenew(self):
 order1 = {
 'id': 1,
 'price': 219,
 'quantity': 10,
 'side': 'bid',
 'action': 'new'
 }

 ob_for_aapl = self.reforderbook
 ob_for_aapl.handle_order(order1)
 order2 = order1.copy()
 order2['id'] = 2
 order2['price'] = 220
 ob_for_aapl.handle_order(order2)
 order3 = order1.copy()
 order3['price'] = 223
 order3['id'] = 3
 ob_for_aapl.handle_order(order3)
 order4 = order1.copy()
 order4['side'] = 'ask'
 order4['price'] = 220
 order4['id'] = 4
 ob_for_aapl.handle_order(order4)
 order5 = order4.copy()
 order5['price'] = 223
 order5['id'] = 5
 ob_for_aapl.handle_order(order5)
 order6 = order4.copy()
 order6['price'] = 221
 order6['id'] = 6
 ob_for_aapl.handle_order(order6)

 self.assertEqual(ob_for_aapl.list_bids[0]['id'],3)
 self.assertEqual(ob_for_aapl.list_bids[1]['id'], 2)
 self.assertEqual(ob_for_aapl.list_bids[2]['id'], 1)
 self.assertEqual(ob_for_aapl.list_asks[0]['id'],4)
 self.assertEqual(ob_for_aapl.list_asks[1]['id'], 6)
 self.assertEqual(ob_for_aapl.list_asks[2]['id'], 5)

Building a Trading System in Python Chapter 7

[262]

Next, we will write the following function to test whether the amendment works.11.
We fill the book by using the prior function, then we amend the order by
changing the quantity:

 def test_handleamend(self):
 self.test_handlenew()
 order1 = {
 'id': 1,
 'quantity': 5,
 'action': 'modify'
 }
 self.reforderbook.handle_order(order1)

 self.assertEqual(self.reforderbook.list_bids[2]['id'], 1)
 self.assertEqual(self.reforderbook.list_bids[2]['quantity'], 5)

The last function in the code involves book management that removes order12.
from the book by the order ID. In this test case, we fill the book with the prior
function and we remove the order:

 def test_handledelete(self):
 self.test_handlenew()
 order1 = {
 'id': 1,
 'action': 'delete'
 }
 self.assertEqual(len(self.reforderbook.list_bids), 3)
 self.reforderbook.handle_order(order1)
 self.assertEqual(len(self.reforderbook.list_bids), 2)

The book event is created when there is a change at the top of the book. We will13.
write the following function to test the creation of the book event after the top of
the book changes:

 def test_generate_book_event(self):
 order1 = {
 'id': 1,
 'price': 219,
 'quantity': 10,
 'side': 'bid',
 'action': 'new'

 }
 ob_for_aapl = self.reforderbook
 self.assertEqual(ob_for_aapl.handle_order(order1),
 {'bid_price': 219, 'bid_quantity': 10,

Building a Trading System in Python Chapter 7

[263]

 'offer_price': -1, 'offer_quantity': -1})
 order2 = order1.copy()
 order2['id'] = 2
 order2['price'] = 220
 order2['side'] = 'ask'
 self.assertEqual(ob_for_aapl.handle_order(order2),
 {'bid_price': 219, 'bid_quantity': 10,
 'offer_price': 220, 'offer_quantity': 10})

 if __name__ == '__main__':
 unittest.main()

In this section, we studied how to build a limit order book. This was a naive
implementation. The complexity to add an order is in the order of O(N) and for each
insertion, we use a sorting algorithm with a complexity of O(N log N). In order to get
a book working faster for order insertion, order lookup, we should use more advanced
data structures, as described in Algorithm Analysis, Packt Publishing. Because we need to sort
the order by price, we need to use an ordered data structure, such as trees. We will change
the complexity of insertion to O(log N). Concurrently, we will fix the lookup time to retrieve
the best price.

Summary
In this chapter, we learned how to build a Python trading system. The trading system we
built presents the critical components that you will need to start trading in real time.
Depending on the trading strategy you implement, you will add some services and you
will modify the behavior of these components. As mentioned at the beginning of this
chapter, the number of traders, the type of strategies, and the types of asset classes will
affect the design of the trading system. Learning how to design a trading system takes years
and it is very common to become expert in a trading system for a given strategy, given asset
class and given number of users. But it is uncommon to become expert in all trading system
types because of their complexity. We built the minimum functionalities that a trading
system must have. To be fully functional, we need to learn how to get this component
connected to a trading system.

In the next chapter, we will focus on explaining all the details related to connection with
exchanges.

8
Connecting to Trading

Exchanges
At this point, we have a good understanding of how to write a trading system and writing
the code for all the critical components. We went into detail about book building, creating
trading signals, and getting a market response.

In this chapter, we will introduce the component that's in charge of communicating with
the outside world and the gateway. We will look at the different functionalities of this
component and describe the different types of protocols that we will encounter. Finally, we
will implement a gateway that will connect to a real liquidity provider.

In this chapter, we will cover the following topics:

Making a trading system trade with exchanges
Reviewing the Communication API
Receiving price updates
Sending orders and receiving market responses

Making a trading system trade with
exchanges
As we saw in Chapter 7, Building a Trading System in Python, a trading system is a piece of
software that is capable of collecting financial data and sending orders to the market. This
trading system has many functional components that are in charge of handling trading and
risks, as well as monitoring the trading process that happens on one or many exchanges.
When you code a trading strategy, it will become a component of the trading system. You
will need input price information and your trading strategy as output. This will send
trading indications. To complete this flow, we require gateways since they are the main
components.

Connecting to Trading Exchanges Chapter 8

[265]

The following diagram shows the functional components of a trading system, the gateway's
interface, and the outside world with the trading system. The gateways collect prices and
market responses and send orders. Its main role is to initiate a connection and to convert
the data that's sent from the outside world into the data structure that will be used in the
trading system:

The following is shown in the preceding diagram:

When you implement your trading strategy, this trading strategy will be on your
machine. The exchange will be located on another machine.
Since these two machines are on different sites, they need to communicate
through a network.
Depending on the location of the system, the ways that are used to communicate
can be different.
If the trading system is collocated (the machines are located in the same facility),
a single wire will be used, which will reduce the network latency.
If we use a cloud solution, the internet could be another method of
communication. In that case, the communication will be much slower than a
direct connect one.

Connecting to Trading Exchanges Chapter 8

[266]

Take a look at the following diagram, which depicts the communication taking place
between the gateways:

The following is shown in the preceding diagram:

When we look closer at the communication that's handled by the gateways, we
can observe that the venues can have different protocols.
The gateways will need to be able to process numerous protocols so that they can
convert them into trading system data structures.

Reviewing the Communication API
Network protocols define the rules of communication between machines. They define how
these machines will be recognized on the network and how they will interact. In trading
finance, we use the UDP and TCP over the IP protocol. Additionally, we use a software
protocol that will define how to communicate with an order and get a price update. The
Communication API will set the rules of communication at the software level. The
Communication API is given by the entity that you would like to trade with. This
document contains all the messages that you will use to receive prices and send orders.

Connecting to Trading Exchanges Chapter 8

[267]

You can find examples of trading API documents at https://en.wikipedia.org/wiki/
List_of_electronic_trading_protocols.

Before diving into the trading API, we will need to explain the basics of networking.

Network basics
The network is in charge of making the computers communicate with each other. Networks
need a physical layer to share information. Choosing the correct media (communication
layer) is critical for the network to reach a given speed or reliability, or even security. In
trading finance, we use the following:

Wire: Electrical currents that are limited in bandwidth
Fiber: More bandwidth
Microwave: An easy-to-install, large bandwidth, but can be impacted by storms

The media will vary, depending on the type of trading strategy you're using. Choosing the
correct media is part of the first layer of the network in the ISO model. This layer is called
the physical layer. On top of this one, there are six more layers describing the type of
communication. The protocol that we will be using in trading finance is the IP protocol.
This is a part of the network layer of the ISO model. This IP protocol sets the rules for
routing network packets in the network. The last layer that we will talk about is the
transport layer. The two most well-known protocols in finance are TCP and UDP. These
two protocols are very different. TCP works by establishing communication between two
machines. All the messages that were sent first will arrive first. UDP doesn't have any
mechanism to establish whether the network packets have been received by the network.

All the exchanges will choose their own protocol by using either TCP or UDP. In the next
section, we will talk about the content that's sent through the network.

Trading protocols
To have two entities communicate with each other, they need to talk the same language. In
networking, we use a protocol. In trading, this protocol is used for any venue. Some venues
can have numerous protocols. Even if they are different, the steps that these protocols go
through to establish a connection and start trading are similar:

They start by initiating a logon describing who the trading initiator is, who the1.
recipient is, and how the communication remains alive.

https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols
https://en.wikipedia.org/wiki/List_of_electronic_trading_protocols

Connecting to Trading Exchanges Chapter 8

[268]

Then, they inquire about what they expect from the different entities, for2.
example, trading or subscribing price updates.
After, that they receive orders and price updates.3.
Then, they maintain communication by sending heartbeats.4.
Finally, they close communication.5.

 The protocol we will be using in this chapter is called the Financial Information eXchange
(FIX) protocol. It was created in 1992 for international real-time exchanges to handle
securities between Fidelity Investments and Salomon Brothers. It expanded to foreign
exchange (FX), fixed income (FI), derivatives, and clearing. This protocol is a string-based
protocol, which means humans can read it. It is platform-independent, is an open protocol,
and has many versions. The most widely used versions are versions 4.2, 4.4, 5, and 1. There
are two types of messages:

The administrative messages, which do not carry any financial data
The application messages, which are used to get price updates and orders

The content of these messages is like a Python dictionary: it is a list of key-value pairs. The
keys are predefined tags; every tag is a number that corresponds to a specific feature.
Associated with these tags are the values, which can be numerical or string values. Let's
take a look at an example:

Let's say that the tag corresponding to the price of an order has the value 44 if we
want to send an order with a price of $1.23. Therefore, in the order message, we
will have 44=1.23.
All the pairs are character-1 separated. This means that if we add the quantity
(tag 38) of 100,000 to our prior example to create an order, we will have
44=1.23|38=100000. The| symbol represents the character-1.
All the messages start with a prefix, that is, 8=FIX.X.Y. This prefix indicates the
fix version numbers. X and Y represent the numbers of the version.
They all terminate when 10=nn corresponds to the checksum.
The checksum is the sum of all the binary values in the message. It helps us
identify transmission problems.

The following is an example of an FIX message:

8=FIX.4.2|9=76|35=A|34=1|49=DONALD|52=20160617-23:11:55.884|56=VENUE1|98=0|
108=30|141=Y|10=134

Connecting to Trading Exchanges Chapter 8

[269]

The preceding FIX message has the following mandatory fields:

A tag of 8, which is associated with the value 4.2. This corresponds to the FIX
version number.
A version number lower than FIX4.4: 8(BeginString), 9(BodyLength), and
35(MsgType).
A version number higher than FIX4.4: 8(BeginString), 9(BodyLength),
35(MsgType), 49(SnderCompID), and 56(TargetCompID).
The message type is defined by the tag 35.
The body length tag, 9, corresponds to the character count starting at tag 35 all
the way to tag 10.
The 10 field is the checksum. The value is calculated by summing up the decimal
value of the ASCII representation of all the bytes up to, but not including, the
checksum field (which is the last field), and returns the value modulo 256.

FIX communication protocols
A trading system must use two connections to be able to trade: one connection to receive
the price updates, and another one for the orders. The FIX protocol conforms to that
requirement by having different messages for the following connections.

Price updates
Trading systems need prices for the liquidities that traders choose to trade. For that, it
initiates a connection to the exchange to subscribe to liquidity updates.

The following diagram describes the communication between the initiator, which is the
trading system, and the acceptor, which is the exchange:

Connecting to Trading Exchanges Chapter 8

[270]

The following diagram represents the FIX messages that are exchanged between the
acceptor and the initiator:

Connecting to Trading Exchanges Chapter 8

[271]

Upon reception of these price updates, the trading system updates the books and will place
orders based on a given signal.

Orders
The trading system will communicate the orders to the exchange by opening a trading
session with the exchange. While this active trading session stays open, order messages will
be sent to the exchange. The exchange will communicate the state of these orders by using
FIX messages. This is shown in the following diagram:

The following diagram represents the FIX messages that are exchanged between the
initiator and the acceptor:

Connecting to Trading Exchanges Chapter 8

[272]

Receiving price updates
When we implement an FIX parser and an FIX composer, we know how tedious and time-
consuming this process is. If you choose to implement these parts from scratch, you will
need to take care of the network connections, the parsing operations, and the part creating
the FIX messages. Because we want to focus on creating a trading system that's capable of
working quickly, we will want to use a library where all the functions have already been
implemented. There are many commercial FIX libraries available, including NYFIX,
Aegisfot – Aethna, Reuters – Traid, and Financial Fusion – Trade Force. The one we will use
is called the quickfix library.

This library can be downloaded from http://www.quickfixengine.org/.

This library was created in 2000 and is supported by Java, C++, and Python.

The libraries simplify the developer's role by using callbacks. A callback is a computer
engineering term and something that we will be using if we have a task that could take
some time to finish. In naive code (code without callbacks), we wait for the end of the
execution of this task.

http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/
http://www.quickfixengine.org/

Connecting to Trading Exchanges Chapter 8

[273]

If we use a callback system, the following takes place:

We start a task and then proceed to the other tasks while this task keeps running.
Once that task has finished, it will call a function to leave the program to handle
the result of this task. Let's assume that we have a trading system with many
tasks.
If one of them is to receive price updates from exchanges, we just use a callback
that's triggered once a price update has been received and parsed by the system.
Once the callback has been called, we will be able to read the specific fields we
need in order to proceed with the rest of our system by using this new price
update.

The quickfix library gives the developer the ability to implement specific tasks for any
messages that are received by the trading system. The following code describes the general
structure of a piece of Python code using the quickfix library:

import sys
 import time
 import quickfix as fix
 import quickfix42 as fix42

 class Application(fix.Application):
 def onCreate(self, sessionID): return
 def onLogon(self, sessionID):
 self.sessionID = sessionID
 print ("Successful Logon to session '%s'." %
sessionID.toString())
 return
 def onLogout(self, sessionID): return
 def toAdmin(self, sessionID, message):return
 def fromAdmin(self, sessionID, message):return
 def toApp(self, sessionID, message):
 print "Sent the following message: %s" % message.toString()
 return
 def fromApp(self, message, sessionID):
 print "Received the following message: %s" % message.toString()
 return

Connecting to Trading Exchanges Chapter 8

[274]

The code imports the quickfix library and creates a
class called Application that's derived from the fix.Application object. Let's go
through this now:

The onLogon and onLogout functions are callback functions that are called
when a logon/logout message (35=A) has been received and parsed by the
system. The argument of the onLogon function is the session ID. It is received
when a connection has been successfully established between the acceptor and
the initiator.
The onCreate function is called when a new session is created to initialize a
trading session.
The toAdmin and toApp functions are used to modify the messages that are sent
to the acceptor.
The fromAdmin and fromApp functions are called when we receive a message
from the acceptor.
The incoming code is the minimal code you need to have an FIX application in
Python.

Each FIX application has its own config file. By reading the documentation on the
quickfix library, you will learn how to configure the application. We are going to
comment on a simple configuration example. The quickfix configuration file is divided
into several parts. The DEFAULT part configures the main app attributes:

The connection type: Initiator or acceptor
The reconnection time: 60 seconds (in this config file)
SenderCompIT: The identification of the initiator

The SESSION part describes the FIX message format. In this example, the FIX version that's
being used is version 4.1. TargetCompID corresponding to the identification of the acceptor
is ARCA. The heartbeat interval is set in this file. This sets a heartbeat that checks whether
the acceptor is still alive and has been sent. The network connection is established by using
a socket. This socket is created based on the IP address (SocketConnectHost) and the port
(SocketConnectPort).

We use a dictionary that defines all the mandatory and optional tags for all the message
types:

default settings for sessions
[DEFAULT]
ConnectionType=initiator
ReconnectInterval=60
SenderCompID=TW

Connecting to Trading Exchanges Chapter 8

[275]

session definition

[SESSION]
inherit ConnectionType, ReconnectInterval and SenderCompID from default
BeginString=FIX.4.1
TargetCompID=ARCA
StartTime=12:30:00
EndTime=23:30:00
HeartBtInt=20
SocketConnectPort=9823
SocketConnectHost=123.123.123.123
DataDictionary=somewhere/FIX41.xml

For the upcoming code example, we will use some free open source software code from
GitHub. It can be found at https://github.com/gloryofrobots/fixsim. This code is a
good example of Python code for initiators and acceptors in terms of the price update and
order side of things.

Initiator code example
The initiator starts communication with the exchange. An initiator will take care of getting
the price updates, while another initiator will take care of the order.

Price updates
The role of the initiator is to start a connection with the acceptor. When the connection is
established, the initiator will subscribe to the acceptor and request price updates. The first
function we will review is the function to subscribe. This function will be called once the
connection is established.

The subscribe function will be called after fixed intervals. When this function is called, we
need to check whether there is an active session. It will build the market data request by
iterating through the list of symbols. Let's have a look at the following code block:

8=FIX.4.4|9=78|35=V|146=1|55=USD/RUB|460=4|167=FOR|262=2|263=1|264=0|265=0|
267=2|269=0|269=0|10=222|

https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim
https://github.com/gloryofrobots/fixsim

Connecting to Trading Exchanges Chapter 8

[276]

As we can see, the message will have a message type of 35=V. The tags and their
corresponding fields and values have been listed in the following table:

Tag Field Value

8 BeginString FIX.4.4

9 BodyLength 78

35 MsgType V

146 NoRelatedSym 1

55 Symbol USD/RUB

460 Product 4

167 SecurityType FOR

262 MDReqID 2

263 SubscriptionRequestType 1

264 MarketDepth 0

Connecting to Trading Exchanges Chapter 8

[277]

265 MDUpdateType 0

267 NoMDEntryTypes 2

269 MDEntryType 0

269 MDEntryType 1

10 CheckSum 222

We can see the following in the preceding table:

For each symbol (the ticker you would like to trade), this function will create a
new market data request message.
Each market data request must have a unique identifier (Market Data Request
ID, that is, MDReqID) that's associated with a given symbol. In the following
example, we use USD/RUB:

def subscribe(self):
 if self.marketSession is None:
 self.logger.info("FIXSIM-CLIENT Market session is none,
skip subscribing")
 return

 for subscription in self.subscriptions:
 message = self.fixVersion.MarketDataRequest()
 message.setField(quickfix.MDReqID(self.idGen.reqID()))
message.setField(quickfix.SubscriptionRequestType(quickfix.Subscrip
tionRequestType_SNAPSHOT_PLUS_UPDATES))
message.setField(quickfix.MDUpdateType(quickfix.MDUpdateType_FULL_R
EFRESH))
 message.setField(quickfix.MarketDepth(0))
 message.setField(quickfix.MDReqID(self.idGen.reqID()))

 relatedSym =
self.fixVersion.MarketDataRequest.NoRelatedSym()

Connecting to Trading Exchanges Chapter 8

[278]

relatedSym.setField(quickfix.Product(quickfix.Product_CURRENCY))
relatedSym.setField(quickfix.SecurityType(quickfix.SecurityType_FOR
EIGN_EXCHANGE_CONTRACT))
 relatedSym.setField(quickfix.Symbol(subscription.symbol))
 message.addGroup(relatedSym)

 group = self.fixVersion.MarketDataRequest.NoMDEntryTypes()
group.setField(quickfix.MDEntryType(quickfix.MDEntryType_BID))
 message.addGroup(group)
group.setField(quickfix.MDEntryType(quickfix.MDEntryType_OFFER))
 message.addGroup(group)

 self.sendToTarget(message, self.marketSession)

We can see the following in the preceding code:

Once we subscribe to all the desired symbols (in this example, currency pairs),
the acceptor will start sending market updates.
The onMarketDataSnapshotFullRefresh function will receive the full
snapshot of every price update coming into the system.

The type of message that's received by the price update gateway is as follows:

8=FIX.4.4|9=429|35=W|34=1781|49=FIXSIM-SERVER-
MKD|52=20190909-19:31:48.011|56=FIXSIM-CLIENT-
MKD|55=EUR/USD|262=74|268=4|269=0|270=6.512|15=EUR|271=2000|276=A|299=a23de
46d-6309-4783-
a880-80d6a02c6140|269=0|270=5.1|15=EUR|271=5000|276=A|299=1f551637-20e5-4d8
b-85d9-1870fd49e7e7|269=1|270=6.512|15=EUR|271=2000|276=A|299=445cb24b-8f94
-47dc-9132-75f4c09ba216|269=1|270=9.49999999999999|15=EUR|271=5000|276=A|29
9=3ba6f03c-131d-4227-b4fb-bd377249f50f|10=001|

This function is a callback. It is called when a Full Snapshot message is received and parsed.
The message parameter will contain the message. Let's have a look at the code:

def onMarketDataSnapshotFullRefresh(self, message, sessionID):

 fix_symbol = quickfix.Symbol()
 message.getField(fix_symbol)
 symbol = fix_symbol.getValue()

 group = self.fixVersion.MarketDataSnapshotFullRefresh.NoMDEntries()
 fix_no_entries = quickfix.NoMDEntries()
 message.getField(fix_no_entries)
 no_entries = fix_no_entries.getValue()

 for i in range(1, no_entries + 1):

Connecting to Trading Exchanges Chapter 8

[279]

 message.getGroup(i, group)
 price = quickfix.MDEntryPx()
 size = quickfix.MDEntrySize()
 currency = quickfix.Currency()
 quote_id = quickfix.QuoteEntryID()

 group.getField(quote_id)
 group.getField(currency)
 group.getField(price)
 group.getField(size)

 quote = Quote()
 quote.price = price.getValue()
 quote.size = size.getValue()
 quote.currency = currency.getValue()
 quote.id = quote_id.getValue()

 fix_entry_type = quickfix.MDEntryType()
 group.getField(fix_entry_type)
 entry_type = fix_entry_type.getValue()

As we can see, we can access the field by using the getField method.

Sending orders and receiving a market
response
The main goal of a trading system is to send orders and receive market responses regarding
these orders. In this section, we will cover how to send an order and how to get an update
on these orders.

The role of the initiator is to initiate a connection with the acceptor. When the connection is
established, the trading session is enabled. From this very moment, the trading system can
send orders to the exchange. The order will have the following type of message:

8=FIX.4.4|9=155|35=D|11=3440|15=USD|21=2|38=20000|40=D|44=55.945|54=1|55=US
D/RUB|59=3|60=20190909-19:35:27|64=SP|107=SPOT|117=b3fc02d3-373e-4632-80a0-
e50c2119310e|167=FOR|10=150|

Connecting to Trading Exchanges Chapter 8

[280]

The initiator creates the orders by using the message type 35=D (representing a single
order). All the fields of these orders will be filled in by the function of the quickfix
library. Let's have a look at the code:

def makeOrder(self, snapshot):
 self.logger.info("FIXSIM-CLIENT Snapshot received %s", str(snapshot))
 quote = snapshot.getRandomQuote()

 self.logger.info("FIXSIM-CLIENT make order for quote %s", str(quote))
 order = self.fixVersion.NewOrderSingle()
order.setField(quickfix.HandlInst(quickfix.HandlInst_AUTOMATED_EXECUTION_OR
DER_PUBLIC_BROKER_INTERVENTION_OK))
order.setField(quickfix.SecurityType(quickfix.SecurityType_FOREIGN_EXCHANGE
_CONTRACT))

 order.setField(quickfix.OrdType(quickfix.OrdType_PREVIOUSLY_QUOTED))
 order.setField(quickfix.ClOrdID(self.idGen.orderID()))
 order.setField(quickfix.QuoteID(quote.id))

 order.setField(quickfix.SecurityDesc("SPOT"))
 order.setField(quickfix.Symbol(snapshot.symbol))
 order.setField(quickfix.Currency(quote.currency))
 order.setField(quickfix.Side(quote.side))

 order.setField(quickfix.OrderQty(quote.size))
 order.setField(quickfix.FutSettDate("SP"))
 order.setField(quickfix.Price(quote.price))
 order.setField(quickfix.TransactTime())
order.setField(quickfix.TimeInForce(quickfix.TimeInForce_IMMEDIATE_OR_CANCE
L))

Once an order is received by an exchange, it will be handled and the exchange will reply to
this order with a specific FIX message. The nature of this message is the execution report
35=8.

The message will acknowledge the order by using the execution report message 35=8, the
ExecType tag 150=0, and OrdStatus 39=0:

8=FIX.4.4|9=204|35=8|34=4004|49=FIXSIM-
SERVER|52=20190909-19:35:27.085|56=FIXSIM-
CLIENT|6=55.945|11=3440|14=20000|15=USD|17=3440|31=55.945|32=20000|37=3440|
38=20000|39=0|44=55.945|54=1|55=USD/RUB|64=20190910|150=0|151=0|10=008|

Connecting to Trading Exchanges Chapter 8

[281]

The order will be filled and the server will send an execution report message indicating that
150=2 and 39=2 for a fill:

8=FIX.4.4|9=204|35=8|34=4005|49=FIXSIM-
SERVER|52=20190909-19:35:27.985|56=FIXSIM-
CLIENT|6=55.945|11=3440|14=20000|15=USD|17=3440|31=55.945|32=20000|37=3440|
38=20000|39=2|44=55.945|54=1|55=USD/RUB|64=20190910|150=2|151=0|10=008|

The onExecutionReport callback in the code will be called once these messages are
received by the trading system:

def onExecutionReport(self, connectionHandler, msg):
 codec = connectionHandler.codec
 if codec.protocol.fixtags.ExecType in msg:
 if msg.getField(codec.protocol.fixtags.ExecType) == "0":
 side = Side(int(msg.getField(codec.protocol.fixtags.Side)))
 logging.debug("<--- [%s] %s: %s %s %s@%s" %
(codec.protocol.msgtype.msgTypeToName(msg.getField(codec.protocol.fixtags.M
sgType)), msg.getField(codec.protocol.fixtags.ClOrdID),
msg.getField(codec.protocol.fixtags.Symbol), side.name,
msg.getField(codec.protocol.fixtags.OrderQty),
msg.getField(codec.protocol.fixtags.Price)))
 elif msg.getField(codec.protocol.fixtags.ExecType) == "2":
 logging.info("Order Filled")
 else:
 logging.error("Received execution report without ExecType")

As shown in the preceding code, we have parsed the fields that we need to get the required
information from the execution report message. We have also tested whether the order has
been acknowledged or filled.

Acceptor code example
The role of the acceptor is to receive the connection from the initiator. As an automatic
trader, you will rarely code this part. However, you will be improving your knowledge if
you know how exchange handle messages are sent by the initiator.

There are two main functions that an acceptor will take care of:

Market data request handling: This is the function that's called when the market
data request is received by the server.
Order handling: This is the function that's called when order messages are
received.

Connecting to Trading Exchanges Chapter 8

[282]

Market Data request handling
Market Data request handling allows the acceptor (the exchange) to register the request
from an initiator who's willing to trade a given symbol. Once this request is received, the
acceptor starts streaming the price updates to the initiator. Let's have a look at the following
code:

def onMarketDataRequest(self, message, sessionID):
 requestID = quickfix.MDReqID()
 try:
 message.getField(requestID)
 except Exception as e:
 raise quickfix.IncorrectTagValue(requestID)

 try:
 relatedSym = self.fixVersion.MarketDataRequest.NoRelatedSym()
 symbolFix = quickfix.Symbol()
 product = quickfix.Product()
 message.getGroup(1, relatedSym)
 relatedSym.getField(symbolFix)
 relatedSym.getField(product)
 if product.getValue() != quickfix.Product_CURRENCY:
 self.sendMarketDataReject(requestID, " product.getValue() !=
quickfix.Product_CURRENCY:", sessionID)
 return

 # bid
 entryType = self.fixVersion.MarketDataRequest.NoMDEntryTypes()
 message.getGroup(1, entryType)

 # ask
 message.getGroup(2, entryType)

 symbol = symbolFix.getValue()
 subscription = self.subscriptions.get(symbol)
 if subscription is None:
 self.sendMarketDataReject(requestID, "Unknown symbol: %s" % str(symbol),
sessionID)
 return

 subscription.addSession(sessionID)
 except Exception as e:
 print e,e.args
 self.sendMarketDataReject(requestID, str(e), sessionID)

Connecting to Trading Exchanges Chapter 8

[283]

As shown in the preceding code, the onMarketDataRequest callback that's handling the
market data request does the following:

Gets the request ID: The exchange will check whether the request ID has not
already been processed.
Gets the symbol ID: The symbol updates that are linked to this symbol will be
sent to the initiator.
Gets the product: The exchange checks whether the product that was requested
is in the system. If the product isn't, a rejection message will be sent to the
initiator.

Order
Order management is the main functionality of an initiator. An exchange must be capable
of handling the following:

New order (35=D): This message is sent for a trading indication. This message
can describe numerous types of orders, such as Limit, Fill or Kill, and Market
order.
Cancel order (35=F): This message is sent to indicate that an order's been
canceled.
Amend order (35=G): This message is sent to amend an order.

The onNewOrderSingle function is the function that handles the orders that are sent by
the initiator. This function needs to get the principal order features:

Symbol (the ticker symbol)
Side (buy or sell)
Type (market, limit, stop, stop limit, and so on)
Quantity (the quantity to be traded)
Price (the price to be traded)
Client order ID (the unique identifier for an order)
Quote ID (the quote identifier to be traded)

An exchange checks whether the order ID already exists. If it does, a rejection message
should be sent to indicate that it isn't possible to create a new order with the same order ID.
If the order is correctly received by the exchange, an execution report message will be sent
to the initiator, indicating that the exchange has received the order.

Connecting to Trading Exchanges Chapter 8

[284]

In the GitHub fixsim code, the author chose to reject randomly incoming orders. When we
will talk about backtesting later in this book, we will mention the different options we can
introduce to model the market's behavior. Introducing a random rejection is one way of
mimicking the market's behavior. If there is no rejection, the exchange will fill the order by
sending an execution report 35=8 with an order status indicating that it's been filled.

The onNewOrderSingle function (callback) is divided into two parts. The first part collects
the information from the New Order (35=D) message. The second part creates a response for
the initiator. This response will be an Execution Report 35=8 message.

The code will create quickfix objects (symbol, side, ordType, and so on) and get the
value from the tag values by using the getField function. The author of this code chooses
to accept an order, but only if this order has been previously quoted. This means that the
order will be based on a price update that has been received by our trading system:

def onNewOrderSingle(self, message, beginString, sessionID):
 symbol = quickfix.Symbol()
 side = quickfix.Side()
 ordType = quickfix.OrdType()
 orderQty = quickfix.OrderQty()
 price = quickfix.Price()
 clOrdID = quickfix.ClOrdID()
 quoteID = quickfix.QuoteID()
 currency = quickfix.Currency()

 message.getField(ordType)
 if ordType.getValue() != quickfix.OrdType_PREVIOUSLY_QUOTED:
 raise quickfix.IncorrectTagValue(ordType.getField())

 message.getField(symbol)
 message.getField(side)
 message.getField(orderQty)
 message.getField(price)
 message.getField(clOrdID)
 message.getField(quoteID)
 message.getField(currency)

Connecting to Trading Exchanges Chapter 8

[285]

The following code will create the Execution Report (35=8) message. The first line of this code
creates an object execution report representing this message. The line after that will create
the required headers for this message:

 executionReport = quickfix.Message()
 executionReport.getHeader().setField(beginString)
executionReport.getHeader().setField(quickfix.MsgType(quickfix.MsgType_Exec
utionReport))
 executionReport.setField(quickfix.OrderID(self.idGen.orderID()))
 executionReport.setField(quickfix.ExecID(self.idGen.execID()))

The following code takes care of building the code so that it simulates rejections. It will
reject the code by taking a reject_chance (a percentage) into account:

 try:
 reject_chance = random.choice(range(1, 101))
 if self.rejectRate > reject_chance:
 raise FixSimError("Rejected by cruel destiny %s" %
str((reject_chance, self.rejectRate)))

The following code will run some checks on the execution size and the price:

 execPrice = price.getValue()
 execSize = orderQty.getValue()
 if execSize > quote.size:
 raise FixSimError("size to large for quote")

 if abs(execPrice - quote.price) > 0.0000001:
 raise FixSimError("Trade price not equal to quote")

The code will finish by populating the required fields of the Execution Report message:

executionReport.setField(quickfix.SettlDate(self.getSettlementDate()))
 executionReport.setField(quickfix.Currency(subscription.currency))
executionReport.setField(quickfix.OrdStatus(quickfix.OrdStatus_FILLED))
 executionReport.setField(symbol)
 executionReport.setField(side)
 executionReport.setField(clOrdID)
 executionReport.setField(quickfix.Price(price.getValue()))
 executionReport.setField(quickfix.AvgPx(execPrice))
 executionReport.setField(quickfix.LastPx(execPrice))
 executionReport.setField(quickfix.LastShares(execSize))
 executionReport.setField(quickfix.CumQty(execSize))
 executionReport.setField(quickfix.OrderQty(execSize))
 executionReport.setField(quickfix.ExecType(quickfix.ExecType_FILL))
 executionReport.setField(quickfix.LeavesQty(0))

Connecting to Trading Exchanges Chapter 8

[286]

The following code will build the rejection message in case of an error. It is done in the
same way as building the message to indicate that the order has been executed. We specify
the Rejected value in the Order Status of the Execution Report message:

except Exception as e:
 self.logger.exception("FixServer:Close order error")
 executionReport.setField(quickfix.SettlDate(''))
 executionReport.setField(currency)
executionReport.setField(quickfix.OrdStatus(quickfix.OrdStatus_REJECTED))
 executionReport.setField(symbol)
 executionReport.setField(side)
 executionReport.setField(clOrdID)
 executionReport.setField(quickfix.Price(0))
 executionReport.setField(quickfix.AvgPx(0))
 executionReport.setField(quickfix.LastPx(0))
 executionReport.setField(quickfix.LastShares(0))
 executionReport.setField(quickfix.CumQty(0))
 executionReport.setField(quickfix.OrderQty(0))
executionReport.setField(quickfix.ExecType(quickfix.ExecType_REJECTED))
 executionReport.setField(quickfix.LeavesQty(0))

Finally, we will send the message back to the initiator:

self.sendToTarget(executionReport, sessionID)

This concludes the part of the code that's specific to the acceptor. The role of the acceptor
can be more rich than the bare minimum code we implement. The main role of the acceptor
is to match orders between traders. If we were implementing an exchange, we would need
to create a matching engine (to match orders that can be filled). In this simple example, we
chose to fill our orders regardless of the state of the market. The main goal was just to build
a simulation mimicking the behavior of the market by filling and rejecting orders.

Other trading APIs
The FIX protocol has been used since 1992. By understanding FIX, which is a string-based
protocol, you will be able to understand other protocols. Nasdaq uses the direct data feed,
ITCH and the direct-trading OUCH protocol. These protocols are much faster than the FIX
protocols because of their limit overhead. These protocols use a fixed offset to specify the
tag values. For instance, instead of using 39=2, the OUCH protocol will use a value of 2 at
an offset of 20.

Connecting to Trading Exchanges Chapter 8

[287]

The New York Stock Exchange (NYSE) uses UTP Direct, which is similar to the NASDAQ
protocols. The cryptocurrency world uses HTTP requests while using the RESTful API or
Websocket way of communicating. All of these protocols provide us with different ways to
represent financial exchange information. They all have the same goal: price update and
order handling.

Summary
In this chapter, we learned that trading system communication is key to trading. The
trading system is in charge of collecting the required prices to make an informed decision.
If this component is slow, it will make the trading decision slower. Gateways are
technically more challenging than any of the other components because they need to deal
with the communication. The communication implies that layers are handled perfectly on
the computer level; that is, the computer architecture (network layer), operating system
(system calls, the driver that talks to the network card, and so on), and the software itself.
All of these layers must be optimized so that they have a fast trading system. Because of
their level of technical complexity, it is unlikely that you will implement this
communication if you have strategies for high-frequency trading. Instead, you will use a
system that's been provided by experts in this domain. However, if your trading strategy is
not time-sensitive, you will be able to use the information you gained from this chapter to
implement communication with the exchange.

We also talked about the communication between your trading system and exchanges. We
learned how to use the Python quickfix library to simplify the time of the communication
system's implementation. We used some software alongside quickfix to simulate exchanges
between the initiator and the acceptor. By doing this, we learned about the workflows of
trading communication systems. We are now aware of how to create a trading system and
how to make this system communicate with the outside world. The last thing we need is to
have confidence that the strategy will perform well on this trading system.

In the next chapter, we will talk about another critical step when it comes to testing a
trading strategy: backtesting.

9
Creating a Backtester in Python

By now, we know how to implement a trading strategy idea. We learned how to write the
code to make it run in a trading system. The final step before going live with a trading
strategy is backtesting. Whether you want to be more confident in the performance of your
strategy or you want to show your managers how well your trading idea performs, you
will have to use a backtester using a large amount of historical data.

In this chapter, you will learn how to create a backtester. You will improve your trading
algorithm by running different scenarios with large amounts of data to validate the
performance of your trading strategy. Once a model is implemented, it is necessary to test
whether the trading robot behaves as expected in the trading infrastructure.

In this chapter, we will learn how backtesting works, and then we will talk about the
assumptions you will need to consider when creating a backtester. Finally, we will provide
a backtester example by using a momentum trading strategy.

In this chapter, we will cover the following topics:

Learning how to build a backtester
Learning how to choose the correct assumptions
Evaluating what the value of time is
Backtesting the dual-moving average trading strategy

Learning how to build a backtester
Backtesting is key in the creation of trading strategies. It assesses how profitable a trading
strategy is by using historical data. It helps to optimize it by running simulations that
generate results showing risk and profitability before risking any capital loss. If the
backtesting returns good results (high profits with reasonable risk), it will encourage
getting this strategy to go alive. If the results are not satisfactory, backtesters can help to
find issues.

Creating a Backtester in Python Chapter 9

[289]

Trading strategies define rules for entry and exit into a portfolio of assets. Backtesting helps
us to decide whether it is worth going live with these trading rules. It provides us with an
idea of how a strategy might have performed in the past. The ultimate goal is to filter out
bad strategy rules before we allocate any real capital.

Backesting can sound out a run of a trading strategy using past market data. Most of the
time, we consider a backtester like a model of reality. We will make assumptions based on
the experience. But if the model is not close enough to reality, the trading strategies will
end up not performing as well, which will result in financial losses.

The first part we will cover in this chapter is getting the data. The data will be stored in
many different forms and, depending on them, we will need to adapt our backtester.

Backtesters use data heavily. In trading, getting 1 terabyte of data a day is pretty common.
It can take a few minutes for a hard disk to read this amount of data. If you are looking for
a specific range of dates, or if you are looking for specific symbols. It will be very important
to have a performance index for the dates, the symbols, or other attributes. The data in
finance is a value associated to a particular time, called time series. Regular relational
databases are not efficient at reading these time series. We will review a few ways to handle
time series.

In-sample versus out-of-sample data
When building a statistical model, we use cross-validation to avoid overfitting. Cross-
validation imposes a division of data into two or three different sets. One set will be used to
create your model, while the other sets will be used to validate the model's accuracy.
Because the model has not been created with the other datasets, we will have a better idea
of its performance.

When testing a trading strategy with historical data, it is important to use a portion of data
for testing. In a statistical model, we call training data the initial data to create the model.
For a trading strategy, we will say that we are in the in-sample data. The testing data will
be called out-of-sample data. As for cross-validation, it provides a way to test the
performance of a trading strategy by resembling real-life trading as far as possible by
testing on new data.

The following diagram represents how we divide the historical data into two different sets.
We will build our trading strategy using the in-sample data. Then, we will use this model
to validate our model with the out-of-sample data:

Creating a Backtester in Python Chapter 9

[290]

When we build a trading strategy, it is important to set aside between 70% and 80% to
build the model. When the trading model is built, the performance of this model will be
tested out of the out-of-sample data (20-30% of data).

Paper trading (forward testing)
Paper trading (also known as forward performance testing) is the final step of the testing
phase. We include the trading strategy to the real-time environment of our system and we
send fake orders. After a day of trading, we will have the logs of all the orders and compare
them to what they were supposed to be. This step is useful because it allows us to test the
strategy and use the entire trading system.

This phase is a way to do a last test of the trading strategy before investing real money. The
benefits of this phase are the absence of any financial risk whatsoever, while the trading
strategy creator can acquire confidence and practice in a stress-free environment while
building new datasets that will be used for further analysis. Unfortunately, performance
obtained by paper trading is not directly correlated to the market. It is difficult to ensure
that an order can be fulfilled, or not, and at what price. Indeed, during a period of high
market volatility, most orders can be rejected. Additionally, orders could be fulfilled at a
worse price (negative slippage).

Naive data storage
One of the most intuitive ways to store data is to use flat file on the hard disk. The problem
with this approach is that the hard disk will need to traverse a vast area to get to the part of
a file corresponding to the data you would like to use for your backtesting. Having indexes
can help enormously in looking up the correct segment to read.

Creating a Backtester in Python Chapter 9

[291]

HDF5 file
The Hierarchical Data Format (HDF) is a file format designed to store and manage large
amounts of data. It was designed in the 90s at the National Center for Supercomputing
Applications (NCSA), and then NASA decided to use this format. Portability and
efficiency for time series storage was key in the design of this language. The trading world
rapidly adopted this format, in particular, High-Frequency Trading (HFT) firms, hedge
funds, and investment banks. These financial firms rely on gigantic amounts of data for
backtesting, trading, and any other kinds of analysis.

This format allows HDF users in finance to handle very large datasets, to obtain access to a
whole section or a subsection of the tick data. Additionally, since it is a free format, the
number of open source tools is significant.

The hierarchical structure of the HDF5 shown uses two major types:

Datasets: Multidimensional arrays of a given type
Groups: Container of other groups and/or datasets

The following diagram shows the hierarchical structure of the HDF5:

To get the dataset's content, we can access it like a regular file using the POSIX syntax
/path/file. The metadata is also stored in groups and datasets. The HDF5 format uses B-
trees to index datasets, which makes it a good storage format for time series, especially
financial asset price series.

In the code, we will describe an example of how to use an HDF5 file in Python. We will use
the load_financial_data function we used in this book to get the GOOG prices. We store
the data frame in an HDF5 file called goog_data. Then, we use the h5py library to read
this file and read the attributes of these files. We will print the data content of this files.

Creating a Backtester in Python Chapter 9

[292]

In this code will get the GOOG financial data. We store this data into the data
frame goog_data:

!/bin/python3
 import pandas as pd
 import numpy as np
 from pandas_datareader import data
 import matplotlib.pyplot as plt
 import h5py

 def load_financial_data(start_date, end_date,output_file):
 try:
 df = pd.read_pickle(output_file)
 print('File data found...reading GOOG data')
 except FileNotFoundError:
 print('File not found...downloading the GOOG data')
 df = data.DataReader('GOOG', 'yahoo', start_date, end_date)
 df.to_pickle(output_file)
 return df

 goog_data=load_financial_data(start_date='2001-01-01',
 end_date = '2018-01-01',
 output_file='goog_data.pkl')

In this part of the code we will store the data frame goog_data into the file
goog_data.h5.

goog_data.to_hdf('goog_data.h5','goog_data',mode='w',format='table',data_co
lumns=True)

We will then load this file from the file goog_data.h5 and create a data
frame goog_data_from_h5_file:

goog_data_from_h5_file = h5py.File('goog_data.h5')

 print(goog_data_from_h5_file['goog_data']['table'])
 print(goog_data_from_h5_file['goog_data']['table'][:])
 for attributes in
goog_data_from_h5_file['goog_data']['table'].attrs.items():
 print(attributes)

Despite being portable and open source, the HDF5 file format has some important caveats:

The likelihood of getting corrupted data is high. When the software handing the
HDF5 file crashes, it is possible to lose all the data located in the same file.
It has limited features. It is not possible to remove arrays.
It offers low performance. There is no use of operating system caching.

Creating a Backtester in Python Chapter 9

[293]

Many financial companies still use this standardized file. It will remain on the market for a
few years. Next, we will talk about the file storage alternative: databases.

Databases
Databases are made to store data. Financial data is time series data, and most databases do
not handle time series data in the most efficient way. The biggest challenge associated with
storing time series data is scalability. An important data stream comes rapidly. We have
two main groups of databases: relational and non-relational databases.

Relational databases
Relational databases have tables that can be written and accessed in many different ways
without having the need to reorganize the database structure. They usually use Structured
Query Language (SQL). The most widely used databases are Microsoft SQL Server,
PostgreSQL, MySQL, and Oracle.

Python has many libraries capable of using any of these databases. We will use
PostGresSQL as an example. The PostGresSQL library, Psycopg2, is used by Python to
handle any SQL queries:

We will use the GOOG data prices to create the database for GOOG data:1.

goog_data.head(10)
 High Low Open Close
Volume Adj Close
Date
2014-01-02 555.263550 550.549194 554.125916 552.963501
3666400.0 552.963501
2014-01-03 554.856201 548.894958 553.897461 548.929749
3355000.0 548.929749
2014-01-06 555.814941 549.645081 552.908875 555.049927
3561600.0 555.049927
2014-01-07 566.162659 556.957520 558.865112 565.750366
5138400.0 565.750366
2014-01-08 569.953003 562.983337 569.297241 566.927673
4514100.0 566.927673
2014-01-09 568.413025 559.143311 568.025513 561.468201
4196000.0 561.468201
2014-01-10 565.859619 557.499023 565.859619 561.438354
4314700.0 561.438354
2014-01-13 569.749329 554.975403 559.595398 557.861633
4869100.0 557.861633

Creating a Backtester in Python Chapter 9

[294]

2014-01-14 571.781128 560.400146 565.298279 570.986267
4997400.0 570.986267
2014-01-15 573.768188 568.199402 572.769714 570.598816
3925700.0 570.598816

To create a table in SQL, we will use the following command. You will need to2.
install PostGresSQL on your machine. Then, you will need to insert the following
content:

CREATE TABLE "GOOG"
 (
 dt timestamp without time zone NOT NULL,
 high numeric NOT NULL,
 low numeric NOT NULL,
 open numeric NOT NULL,
 close numeric NOT NULL,
 volume numeric NOT NULL,
 adj_close numeric NOT NULL
 CONSTRAINT "GOOG_pkey" PRIMARY KEY (dt)
);

This command will create a SQL table named GOOG. The primary key of this table
will be the timestamp, dt.

As an example, we will run the following query to get the GOOG data from3.
2016-11-08 to 2016-11-09:

SQL = '''SELECT
 dt,high,low,open,close,volume, adj_close
 FROM "GOOG"
 WHERE dt BETWEEN '2016-11-08' AND '2016-11-09'
 ORDER BY dt
 LIMIT 100;'''

The Python code will be the following:

import psycopg2
conn = psycopg2.connect(database='name_of_your_database') # set
the appropriate credentials
cursor = conn.cursor()
def query_ticks():
 cursor.execute(SQL)
 data = cursor.fetchall()
 return data

The query_ticks function will return the GOOG data.

Creating a Backtester in Python Chapter 9

[295]

The main issue with a relational database is speed. They are not made to work with large
amounts of data indexed by time. To speed up, we will need to use non-relational
databases.

Non-relational databases
Non-relational databases are very widespread. Because the nature of the data is
increasingly based on time series, this type of database has developed rapidly during the
last decade. The best non-relational database for time series is called KDB. This database is
designed to achieve performance with time series. There are many other competitors,
including InfluxDB, MongoDB, Cassandra, TimescaleDB, OpenTSDB, and Graphite.

All of these databases have their pros and cons:

Pros Cons

KDB High performance Price; very difficult to use because of a non-
SQL language

InfluxDB Free, performant, quick start Small community; poor performance analysis
tool, no security

MongoDB Faster than rational databases No data joins; slow
Cassandra Faster than rational databases Unpredictable performance
TimescaleDB SQL support Performance
Graphite Free, widespread support Performance
OpenTSDB Faster than rational databases Small number of features

As shown in the table, it is difficult to choose an alternative to KDB. We will code an
example of Python code using the KDB library, pyq. We will create an example similar to
the one we created for PostGresSQL:

from pyq import q
 from datetime import date

This is the part to be run on kdb
 #googdata:([]dt:();high:();low:();open:();close:();volume:(),adj_close:())

 q.insert('googdata', (date(2014,01,2), 555.263550, 550.549194, 554.125916,
552.963501, 3666400.0, 552.963501))
 q.insert('googdata', (date(2014,01,3), 554.856201, 548.894958, 553.897461,
548.929749, 3355000.0, 548.929749))

 q.googdata.show()
 High Low Open Close Volume

Creating a Backtester in Python Chapter 9

[296]

Adj Close
 Date
 2014-01-02 555.263550 550.549194 554.125916 552.963501 3666400.0
552.963501
 2014-01-03 554.856201 548.894958 553.897461 548.929749 3355000.0
548.929749

 # This is the part to be run on kdb
 # f:{[s]select from googdata where date=d}

 x=q.f('2014-01-02')
 print(x.show())

 2014-01-02 555.263550 550.549194 554.125916 552.963501 3666400.0
552.963501

This code ends this section on data storage. This part is critical in the design of your
backtester since the running time of your backtesting will enable you to save time so as to
be able to run many more backtests to validate your trading strategy. Following this section
on different ways of storing financial data, we will introduce how a backtester works.

Learning how to choose the correct
assumptions
Backtesting is a required step for deploying trading strategies. We use the historical data
stored in databases to reproduce the behavior of the trading strategy. The fundamental
assumption is that any methodology that functioned in the past is probably going to
function in the future. Any strategies that performed ineffectively in the past are probably
going to perform inadequately in the future. This section investigates what applications are
utilized in backtesting, what sort of information is obtained, and how to utilize them.

A backtester can be a for-loop or event-driven backtester system. It is always important to
consider how much time you will spend in order to achieve higher accuracy. It is
impossible to obtain a model corresponding to reality; a backtester will just be a model of
reality. However, there are rules to be followed in order to be as close as possible to the real
market:

Training/testing data: As with any models, you should not test your model with
the data you use to create this model. You need to validate your data on unseen
data to limit overfitting. When we use machine learning techniques, it is easy to
overfit a model; that's why it is capital to use cross-validation to improve the
accuracy of your model.

Creating a Backtester in Python Chapter 9

[297]

Survivorship-bias free data: If your strategy is a long-term position strategy, it is
important to use the survivorship-bias free data. This will prevent you from
focusing on winners alone without considering the losers.
Look-ahead data: When you build a strategy, you should not look ahead to make
a trading decision. Sometimes, it is easy to make this mistake by using numbers
calculated using the whole sample. This may be the case with an average that
could potentially be calculated within all the data; data that you shouldn't have
since you calculate the average using just the prices you get before placing an
order.
Market change regime: Modeling stock distribution parameters are not constant
in time because the market changes regime.
Transaction costs: It is important to consider the transaction costs of your
trading. This is very easy to forget and not to make money on the real market.
Data quality/source: Since there are many financial data sources, data
composition differs a lot. For instance, when you use OHLC data from Google
Finance, it is an aggregation of many exchange feeds. It will be difficult to obtain
the same highs and lows with your trading system. Indeed, in order to have a
match between your model and reality, the data you use must be as close as
possible to the one you will use.
Money constraint: Always consider that the amount of money you trade is not
infinite. Additionally, if you use a credit/margin account, you will be limited by
the position you take.
Average daily volume (ADV): The average number of shares traded over a day
for a given ticker. The quantity of shares you choose to trade will be based on this
number so as to avoid any impact on the market.
Benchmark testing: In order to test the performance of your trading strategy,
you will compare against another type of strategy or just against the return of
some indexes. If you trade futures, do not test against the S&P 500. If you trade in
airlines, you should check whether the airline industry as a whole performs
better than your model.
Initial condition assumption: In order to have a robust way of making money,
you should not depend on the day you start your backtesting or the month. More
generally, you should not assume that the initial condition is always the same.
Psychology: Even if we are building a trading robot, when we trade for real,
there is always a way to override what the algorithm is doing, even if,
statistically speaking, based on the backtest, a trading strategy can have a large
dropdown but, after a few days, this strategy can bring in a lot of profit if we
maintain a given position. For a computer, there are no problems with taking
that risk but, for a human, it is more difficult. Therefore, psychology can play a
large role in the performance of a strategy.

Creating a Backtester in Python Chapter 9

[298]

On top of the prior rules, we will need to assume how we expect the market to behave.
When you present a trading strategy to anyone, it is important to specify what these
assumptions are.

One of the first assumption you need to consider is the fill ratio. When we place an order,
depending on the type of strategies, the change of getting the order executed varies. If you
trade with a high-frequency trading strategy, you may have 95% of the orders rejected. If
you trade when there are important news on the market (such as FED announcements), you
may have most of your orders rejected. Therefore, you will need to give a lot of thoughts on
the fill ratio of your backtester.

Another important consideration is when you create a market making strategy. Unlike
market trading strategies, a market making strategy does not remove liquidities from the
market but add liquidities. Therefore it is important to create an assumption regarding
when your order will be executed (or maybe it will not be executed). This assumption will
add a condition to the backtester. We may get additional data. For instance, the trades
which have been done in the market at a given time. This information will help us to decide
whether a given market making order was supposed to be executed or not.

We can add additional latency assumptions. Indeed, since a trading system relies on many
components. All the components have latencies and they also add latency when
communicating. We can latency of any components of the trading systems, we can add
network latency but also the latency to have an order executed, acknowledged.

The list of assumptions can be pretty long but it will be very important to show these
assumptions to explain how likely your trading strategy will perform on the real market.

For-loop backtest systems
The for-loop backtester is a very simple infrastructure. It reads price updates line by line
and calculates more metrics out of those prices (such as the moving average at the close). It
then makes a decision on the trading direction. The profit and loss is calculated and
displayed at the end of this backtester. The design is very simple and can quickly discern
whether a trading idea is feasible.

An algorithm to picture how this kind of backtester works is shown here:

for each tick coming to the system (price update):
 create_metric_out_of_prices()
 buy_sell_or_hold_something()
 next_price()

Creating a Backtester in Python Chapter 9

[299]

Advantages
The for-loop backtester is very simple to comprehend. It can be easily implemented in any
programming language. The main functionality of this type of backtester is to read a file
and calculate new metrics based on price alone. Complexity and the need for calculating
power are very low. Therefore, execution does not take too long and it is quick to obtain
results regarding the performance of the trading strategies.

Disadvantages
The main weakness of the for-loop backtester is accuracy in relation to the market. It
neglects transactions costs, transaction time, the bid and offer price, and volume. The
likelihood of making a mistake by reading a value ahead of time is pretty high (look-ahead
bias).

While the code of a for-loop backtester is easy to write, we should still use this type of
backtester to eliminate low-performance strategies. If a strategy does not perform well with
for-loop backtesters, this means that it will perform even worse on more realistic
backtesters.

Since it is important to have a backtester that's as realistic as possible, we will learn how an
event-driven backtester works in the following section.

Event-driven backtest systems
An event-driven backtester uses almost all the components of the trading system. Most of
the time, this type of backtester encompass all the trading system components (such as the
order manager system, the position manager, and the risk manager). Since more
components are involved, the backtester is more realistic.

The event-driven backtester is close to the trading system we implemented in Chapter
7, Building a Trading System in Python. We left the code of the TradingSimulation.py
file empty. In this section, we will see how to code that missing code.

We will have a loop calling all the components one by one. The components will read the
input one after the other and will then generate events if needed. All these events will be
inserted into a queue (we'll use the Python deque object). The events we encountered when
we coded the trading system were the following:

Tick events – When we read a new line of market data
Book events – When the top of the book is modified

Creating a Backtester in Python Chapter 9

[300]

Signal events – When it is possible to go long or short
Order events – When orders are sent to the market
Market response events – When the market response comes to the trading system

The pseudo code for an event-driven backtesting system is as follows:

from chapter7.LiquidityProvider import LiquidityProvider
 from chapter7.TradingStrategy import TradingStrategy
 from chapter7.MarketSimulator import MarketSimulator
 from chapter7.OrderManager import OrderManager
 from chapter7.OrderBook import OrderBook
 from collections import deque

 def main():
 lp_2_gateway = deque()
 ob_2_ts = deque()
 ts_2_om = deque()
 ms_2_om = deque()
 om_2_ts = deque()
 gw_2_om = deque()
 om_2_gw = deque()

 lp = LiquidityProvider(lp_2_gateway)
 ob = OrderBook(lp_2_gateway, ob_2_ts)
 ts = TradingStrategy(ob_2_ts, ts_2_om, om_2_ts)
 ms = MarketSimulator(om_2_gw, gw_2_om)
 om = OrderManager(ts_2_om, om_2_ts, om_2_gw, gw_2_om)

 lp.read_tick_data_from_data_source()
 while len(lp_2_gateway)>0:
 ob.handle_order_from_gateway()
 ts.handle_input_from_bb()
 om.handle_input_from_ts()
 ms.handle_order_from_gw()
 om.handle_input_from_market()
 ts.handle_response_from_om()
 lp.read_tick_data_from_data_source()
 if __name__ == '__main__':
 main()

We can see that all the components of the trading system are called. If we had a service
checking the position, this service would be called.

Creating a Backtester in Python Chapter 9

[301]

Advantages
Because we use all the components, we will have a result that more closely corresponds to
reality. One of the critical components is the market simulator (MarketSimulator.py).
This component must have the same market assumptions. We can add the following
parameters to the market simulator:

Latency to send an acknowledgement
Latency to send a fill
An order filling condition
A volatility filling condition
A market making estimate

The advantages of the event-based backtester are as follows:

Look-ahead bias elimination—since we receive events, we cannot look at the data
ahead.
Code encapsulation—because we use objects for the different parts of the trading
system, we can just change the behavior of our trading system by changing the
objects. The market simulation object is one such example.
We can insert a position/risk management system and check whether we do not
go against the limit.

Disadvantages
Even if the advantages are numerous, we need to consider that this type of event-based
system is difficult to code. Indeed, if there are threads in the trading system, we will need to
make this thread deterministic. For instance, let's assume the trading system takes care of
timing out if an order doesn't get a response within 5 seconds. The best practice to code this
functionality would be to have a thread counting 5 seconds and then timing out. If we use
the thread in backtesting, the time shouldn't be the real time because when we read the tick,
the time will be the simulated time.

Additionally, it requires a lot of handling, such as log management, unit testing, and
version control. The execution of this system can be very slow.

Creating a Backtester in Python Chapter 9

[302]

Evaluating what the value of time is
As we saw in the previous parts of this chapter, backtester accuracy is critical when we
build a trading strategy. The two main components creating discrepancies between the
paper trading of your trading strategy and the actual performance are as follows:

The market behavior that we face when the trading strategy goes live
The trading system that you use to trade

We saw that the market impact can be medicated by making assumptions regarding the
manner in which the market will respond. This part is very challenging because it is just
based on assumptions. As regards the second cause of discrepancies, the trading system
itself, we can find an easy solution. We will be able to use the trading system as it is to be
the backtester. We will get all the main trading components together and we will have them
communicate between one another as if they were in production.

When we use the time in production, we can get the time from the computer's clock. For
instance, we can stamp a book event coming to the trading strategy by just getting the time
from the function now coming from the datetime module in Python. By way of another
example, suppose we place an order. Because it is unsure whether the market will respond
to this order, we will use a timeout system. This timeout system will call a function after a
given period of time if no acknowledgement has been received by the trading system from
the market. To accomplish this operation, we usually spawn a thread counting the number
of seconds up to the timeout time. When counting, if the state of the order has not changed
to acknowledge the order, this thread will call a callback function, onTimeOut. This
callback will have the role of handling what should occur when an order timed out on the
market. If we want to mock the timeout system in the backtester, this is going to be more
challenging. Because we cannot use the real-time clock of the machine to count to the
timeout time, we will need to use a simulated clock during the whole process.

Creating a Backtester in Python Chapter 9

[303]

The following diagram shows how the backtester will work with the new simulated clock
component handling the time. Each time a component needs to get the time, it will call a
function, getTime. This function will return the simulated time (being the time of the last
tick read by the LiquidityProvider class):

We will implement the Simulated Clock function (SimulatedRealClock class).1.
Each time the trading system is started in backtest mode, we will use the
SimulatedRealClock class with the simulated=True argument. If the trading
system runs in real time to place orders on the market, the
SimulatedRealClock class will be created without arguments or with the
simulated=False argument, . When the time is given by a simulated time, the
time will come from the order timestamps:

from datetime import datetime

class SimulatedRealClock:
 def __init__(self,simulated=False):
 self.simulated = simulated
 self.simulated_time = None
 def process_order(self,order):
 self.simulated_time= \
 datetime.strptime(order['timestamp'], '%Y-%m-%d
%H:%M:%S.%f')
 def getTime(self):
 if not self.simulated:
 return datetime.now()
 else:
 return self.simulated_time

Creating a Backtester in Python Chapter 9

[304]

realtime=SimulatedRealClock()
print(realtime.getTime())
It will return the date/time when you run this code
simulatedtime=SimulatedRealClock(simulated=True)
simulatedtime.process_order({'id' : 1, 'timestamp' : '2018-06-29
08:15:27.243860'})
print(simulatedtime.getTime())
It will return 2018-06-29 08:15:27.243860

When coding a trading system, when you need the value of time, you will always
need to use a reference to the SimulatedRealClock class and use the value
returned by the getTime function.

In the following code, we will see the implementation of an order2.
management system timing out 5 seconds after sending an order. We will first
show you how to create a TimeOut class counting to the timeout value and
calling a function when a timeout occurs. This TimeOut class is a thread. It
means that the execution of this class will be concurrent to the main program.
The arguments to build this class are the SimulateRealClock class, the time
considered as the timeout time, and a function that will be called as a callback,
fun. This class will run a loop as long as the current time is not older than the
time to stop the countdown. If the time is higher and the TimeOut class has not
been disabled, the callback function will be called. If the TimeOut class is
disabled because the response to the order arrived in the system, the callback
function will not be called. We can observe that we will compare the time to stop
the timer with the current time by using the getTime function from
the SimulatedRealClock class:

class TimeOut(threading.Thread):
 def __init__(self,sim_real_clock,time_to_stop,fun):
 super().__init__()
 self.time_to_stop=time_to_stop
 self.sim_real_clock=sim_real_clock
 self.callback=fun
 self.disabled=False
 def run(self):
 while not self.disabled and\
 self.sim_real_clock.getTime() < self.time_to_stop:
 sleep(1)
 if not self.disabled:
 self.callback()

Creating a Backtester in Python Chapter 9

[305]

The following OMS class that we will implement is just a small subset of what the3.
order manager service can do. This OMS class will be in charge of sending an
order. Each time an order is sent, a 5-second timeout will be created. This means
that the onTimeOut function will be called if the OMS does not receive a response
to the order placed on the market. We can observe that we build the TimeOut
class by using the getTime function from the SimulatedRealClock class:

class OMS:
 def __init__(self,sim_real_clock):
 self.sim_real_clock = sim_real_clock
 self.five_sec_order_time_out_management=\
 TimeOut(sim_real_clock,
 sim_real_clock.getTime()+timedelta(0,5),
 self.onTimeOut)
 def send_order(self):
 self.five_sec_order_time_out_management.disabled = False
 self.five_sec_order_time_out_management.start()
 print('send order')
 def receive_market_reponse(self):
 self.five_sec_order_time_out_management.disabled = True
 def onTimeOut(self):
 print('Order Timeout Please Take Action')

When we run the following code to verify whether that works, we create two
cases:

Case 1: This will use the OMS in real time by using SimulatedRealClock
in real-time mode.
Case 2: This will use the OMS in simulated mode by
using SimulatedRealClock in simulated mode.

In the following code, Case 1 will trigger a timeout after 5 seconds, and Case 2 will4.
trigger a timeout when the simulated time is older than the time to trig the
timeout:

if __name__ == '__main__':
 print('case 1: real time')
 simulated_real_clock=SimulatedRealClock()
 oms=OMS(simulated_real_clock)
 oms.send_order()
 for i in range(10):
 print('do something else: %d' % (i))
 sleep(1)

 print('case 2: simulated time')

Creating a Backtester in Python Chapter 9

[306]

 simulated_real_clock=SimulatedRealClock(simulated=True)
 simulated_real_clock.\
 process_order({'id' : 1,\
 'timestamp' : '2018-06-29 08:15:27.243860'})
 oms = OMS(simulated_real_clock)
 oms.send_order()
 simulated_real_clock. \
 process_order({'id': 1, \
 'timestamp': '2018-06-29 08:21:27.243860'})

When we use a backtester as a trading system, it is very important to use a class capable of
handling simulation and real time. You will be able to achieve better accuracy by using the
trading system and you will build better confidence in your trading strategy.

Backtesting the dual-moving average
trading strategy
The dual-moving average trading strategy places a buy order when the short moving
average crosses the long moving average in an upward direction and will place a sell order
when the cross happens on the other side. This section will present the backtesting
implementation of the dual-moving average strategy. We will present the implementation
of a for-loop backtester and an event-based backtester.

For-loop backtester
As regards the implementation of this backtester, we will use the GOOG data by1.
retrieving it with the same function we used previously,
load_financial_data. We will follow the pseudo code that we proposed
during the previous section:

for each price update:
 create_metric_out_of_prices()
 buy_sell_or_hold_something()
 next_price();

We will create a ForLookBackTester class. This class will handle, line by line, all
the prices of the data frame. We will need to have two lists capturing the prices to
calculate the two moving averages. We will store the history of profit and loss,
cash, and holdings to draw a chart to see how much money we will make.

Creating a Backtester in Python Chapter 9

[307]

The create_metrics_out_of_prices function calculates the long moving
average (100 days) and the short moving average (50 days). When the short
window moving average is higher than the long window moving average, we
will generate a long signal. The buy_sell_or_hold_something function will
place orders. The buy order will be placed when there is a short position or no
position. The sell order will be placed when there is a long position or no position.
This function will keep track of the position, the holdings, and the profit.

These two functions will be sufficient for this for-loop backtester.

Now, let's import the following libraries as shown in this code:2.

#!/bin/python3
 import pandas as pd
 import numpy as np
 from pandas_datareader import data
 import matplotlib.pyplot as plt
 import h5py
 from collections import deque

Next, as shown, we will call the load_financial_data function previously3.
defined in this book:

 goog_data=load_financial_data(start_date='2001-01-01',
 end_date = '2018-01-01',
 output_file='goog_data.pkl')

 # Python program to get average of a list
 def average(lst):
 return sum(lst) / len(lst)

Let's now define the ForLoopBackTester class as shown. This class will have4.
the data structure to support the strategy in the constructor. We will store the
historic values for profit and loss, cash, positions, and holdings. We will also
keep the real-time profit and loss, cash, position, and holding values:

 class ForLoopBackTester:
 def __init__(self):
 self.small_window=deque()
 self.large_window=deque()
 self.list_position=[]
 self.list_cash=[]
 self.list_holdings = []
 self.list_total=[]

 self.long_signal=False

Creating a Backtester in Python Chapter 9

[308]

 self.position=0
 self.cash=10000
 self.total=0
 self.holdings=0

As shown in the code, we will write the create_metric_out_of_prices5.
function to update the real-time metrics the trading strategy needs in order to
make a decision:

 def create_metrics_out_of_prices(self,price_update):
 self.small_window.append(price_update['price'])
 self.large_window.append(price_update['price'])
 if len(self.small_window)>50:
 self.small_window.popleft()
 if len(self.large_window)>100:
 self.large_window.popleft()
 if len(self.small_window) == 50:
 if average(self.small_window) >\
 average(self.large_window):
 self.long_signal=True
 else:
 self.long_signal = False
 return True
 return False

The buy_sell_or_hold_something function will take care of placing the6.
orders based on the calculation from the prior function:

 def buy_sell_or_hold_something(self,price_update):
 if self.long_signal and self.position<=0:
 print(str(price_update['date']) +
 " send buy order for 10 shares price=" +
str(price_update['price']))
 self.position += 10
 self.cash -= 10 * price_update['price']
 elif self.position>0 and not self.long_signal:
 print(str(price_update['date'])+
 " send sell order for 10 shares price=" +
str(price_update['price']))
 self.position -= 10
 self.cash -= -10 * price_update['price']

 self.holdings = self.position * price_update['price']
 self.total = (self.holdings + self.cash)
 print('%s total=%d, holding=%d, cash=%d' %
 (str(price_update['date']),self.total,
self.holdings, self.cash))

Creating a Backtester in Python Chapter 9

[309]

 self.list_position.append(self.position)
 self.list_cash.append(self.cash)
 self.list_holdings.append(self.holdings)
 self.list_total.append(self.holdings+self.cash)

We will feed this class by using the goog_data data frame as shown:7.

naive_backtester=ForLoopBackTester()
 for line in zip(goog_data.index,goog_data['Adj Close']):
 date=line[0]
 price=line[1]
 price_information={'date' : date,
 'price' : float(price)}
 is_tradable =
naive_backtester.create_metrics_out_of_prices(price_information)
 if is_tradable:
naive_backtester.buy_sell_or_hold_something(price_information)

When we run the code, we will obtain the following curve. This curve shows that this
strategy makes around a 50% return with the range of years we are using for the backtest.
This result is obtained by assuming a perfect fill ratio. Additionally, we don't have any
mechanism preventing drawdown, or large positions. This is the most optimistic approach
when we study the performance of trading strategies:

Creating a Backtester in Python Chapter 9

[310]

Achieving improved confidence in the way the strategy will perform in the market implies
having a backtester that considers the characteristics of the trading system (more generally,
the specificities of the company trading strategy where you work) and market assumptions.
To make things more akin to scenarios encountered in real life, we will need to backtest the
trading strategy by using most of the trading system components. Additionally, we will
include the market assumptions in a market simulator.

In the following section, we will implement an event-based backtester handling the same
GOOG data and we will be able to appreciate the differences.

Event-based backtester
The goal of the event-based backtester is to achieve better accuracy in the trading arena. We
will consider the internals of the trading system by using the trading system we built in the
last chapter and we will use the market simulator to simulate the external constraints of the
market.

In this section, we will create an EventBasedBackTester class. This class will have a
queue between all the components of the trading systems. Like when we wrote our first
Python trading system, the role of these queues is to pass events between two components.
For instance, the gateway will send the market data to the book through a queue. Each
ticker (price update) will be considered an event. The event we implemented in the book
will be triggered each time there is a change in the top of the order book. If there is a change
in the top of the book, the book will pass a book event, indicating that there is a change in
the book. This queue will be implemented using the deque from the collection library. All
the trading object components will be linked to one another by these queues.

The input for our system will be the Yahoo finance data collected by the
panda DataReader class. Because this data doesn't contain any orders, we will change the
data with the process_data_from_yahoo function. This function will use a price and will
convert this price to an order.

Creating a Backtester in Python Chapter 9

[311]

The order will be queued in the lp_2_gateway queue. Because we need to fake the fact
that this order will disappear after each iteration, we will also delete the order. The
process_events function will ensure that all the events generated by a tick have been
processed by calling the call_if_not_empty function. This function has two arguments:

A queue: This queue is checked if empty. If this queue is not empty, it will call
the second argument.
A function: This is the reference to the function that will be called when the
queue is not empty.

We will now describe the steps we will take to build the event-based backtester.

In the following code, we will import the objects we created during Chapter 7,1.
Building a Trading System in Python. We will use the trading system we built as a
backtester:

 from chapter7.LiquidityProvider import LiquidityProvider
 from chapter7.TradingStrategyDualMA import TradingStrategyDualMA
 from chapter7.MarketSimulator import MarketSimulator
 from chapter7.OrderManager import OrderManager
 from chapter7.OrderBook import OrderBook
 from collections import deque
 import pandas as pd
 import numpy as np
 from pandas_datareader import data
 import matplotlib.pyplot as plt
 import h5py

To read all the elements from a deque, we will implement the2.
call_if_not_empty function. This function will help to call a function as long
as a deque is not empty:

 def call_if_not_empty(deq, fun):
 while (len(deq) > 0):
 fun()

In the code, we will implement the EventBasedBackTester class. The3.
constructor of this class will build all the deque needed to have all the
components communicate. We will also instantiate all the objects in the
constructor of EventBasedBackTester:

 class EventBasedBackTester:
 def __init__(self):
 self.lp_2_gateway = deque()
 self.ob_2_ts = deque()

Creating a Backtester in Python Chapter 9

[312]

 self.ts_2_om = deque()
 self.ms_2_om = deque()
 self.om_2_ts = deque()
 self.gw_2_om = deque()
 self.om_2_gw = deque()
 self.lp = LiquidityProvider(self.lp_2_gateway)
 self.ob = OrderBook(self.lp_2_gateway, self.ob_2_ts)
 self.ts = TradingStrategyDualMA(self.ob_2_ts,
self.ts_2_om,\
 self.om_2_ts)
 self.ms = MarketSimulator(self.om_2_gw, self.gw_2_om)
 self.om = OrderManager(self.ts_2_om, self.om_2_ts,\
 self.om_2_gw, self.gw_2_om)

The process_data_from_yahoo function will convert the data created by the4.
panda DataReader class to orders that the trading system can use in real time. In
this code, we will create a new order that we will then delete just after:

 def process_data_from_yahoo(self,price):

 order_bid = {
 'id': 1,
 'price': price,
 'quantity': 1000,
 'side': 'bid',
 'action': 'new'
 }
 order_ask = {
 'id': 1,
 'price': price,
 'quantity': 1000,
 'side': 'ask',
 'action': 'new'
 }
 self.lp_2_gateway.append(order_ask)
 self.lp_2_gateway.append(order_bid)
 self.process_events()
 order_ask['action']='delete'
 order_bid['action'] = 'delete'
 self.lp_2_gateway.append(order_ask)
 self.lp_2_gateway.append(order_bid)

Creating a Backtester in Python Chapter 9

[313]

The process_events function will call all the components as long as we have5.
new orders coming. Every component will be called as long as we didn't flush all
the events in the deque:

 def process_events(self):
 while len(self.lp_2_gateway)>0:
 call_if_not_empty(self.lp_2_gateway,\
 self.ob.handle_order_from_gateway)
 call_if_not_empty(self.ob_2_ts, \
 self.ts.handle_input_from_bb)
 call_if_not_empty(self.ts_2_om, \
 self.om.handle_input_from_ts)
 call_if_not_empty(self.om_2_gw, \
 self.ms.handle_order_from_gw)
 call_if_not_empty(self.gw_2_om, \
 self.om.handle_input_from_market)
 call_if_not_empty(self.om_2_ts, \
 self.ts.handle_response_from_om)

The following code will instantiate the event-based backtester by creating6.
the eb instance. Because we are going to load the same GOOG financial data, we
will use the load_financial_data function. Then, we will create a for-loop
backtester where will feed, one by one, the price updates to the event-based
backtester:

 eb=EventBasedBackTester()

 def load_financial_data(start_date, end_date,output_file):
 try:
 df = pd.read_pickle(output_file)
 print('File data found...reading GOOG data')
 except FileNotFoundError:
 print('File not found...downloading the GOOG data')
 df = data.DataReader('GOOG', 'yahoo', start_date,
end_date)
 df.to_pickle(output_file)
 return df

 goog_data=load_financial_data(start_date='2001-01-01',
 end_date = '2018-01-01',
 output_file='goog_data.pkl')

 for line in zip(goog_data.index,goog_data['Adj Close']):
 date=line[0]
 price=line[1]

Creating a Backtester in Python Chapter 9

[314]

 price_information={'date' : date,
 'price' : float(price)}
 eb.process_data_from_yahoo(price_information['price'])
 eb.process_events()

At the end of this code, we will display the curve representing the cash amount7.
within the trading period:

 plt.plot(eb.ts.list_total,label="Paper Trading using Event-Based
BackTester")
 plt.plot(eb.ts.list_paper_total,label="Trading using Event-Based
BackTester")
 plt.legend()
 plt.show()

The new code that we introduce in this section is the code for the trading strategy.
Our first trading strategy that we implemented in our trading system was an
arbitrage strategy. This time, we will continue the example of the dual-moving
average trading strategy.

This code shows that the logic of the trading strategy uses the same code as the
for-loop backtester. The create_metrics_out_of_prices and
buy_sell_or_hold_something functions are untouched. The main difference is
regarding the execution part of the class. The execution takes care of the market
response. We will be using a set of variables related to the paper trading mode to
show the difference between actual and paper trading. Paper trading implies that
every time the strategy sends an order, this order is filled at the price asked by the
trading strategy. On the other side of the coin, the handle_market_response
function will consider the response from the market to update the positions,
holdings, and profit and loss.

We will code the TradingStrategyDualMA class inspired by the8.
TradingStrategy class that we coded in Chapter 7, Building a Trading System in
Python. This class will take care of keeping track of two series of values, the
values for paper trading and the values for backtesting:

 class TradingStrategyDualMA:
 def __init__(self, ob_2_ts, ts_2_om, om_2_ts):
 self.orders = []
 self.order_id = 0

 self.position = 0
 self.pnl = 0
 self.cash = 10000
 self.paper_position = 0

Creating a Backtester in Python Chapter 9

[315]

 self.paper_pnl = 0
 self.paper_cash = 10000
 self.current_bid = 0
 self.current_offer = 0
 self.ob_2_ts = ob_2_ts
 self.ts_2_om = ts_2_om
 self.om_2_ts = om_2_ts
 self.long_signal=False
 self.total=0
 self.holdings=0
 self.small_window=deque()
 self.large_window=deque()
 self.list_position=[]
 self.list_cash=[]
 self.list_holdings = []
 self.list_total=[]
 self.list_paper_position = []
 self.list_paper_cash = []
 self.list_paper_holdings = []
 self.list_paper_total = []

For each tick received, we will create a metric to make decisions. In this example,9.
we use the dual-moving average trading strategy. Therefore, we will use two
moving averages that we will build tick by tick. The
create_metric_out_of_prices function calculates the short and long moving
averages:

 def create_metrics_out_of_prices(self,price_update):
 self.small_window.append(price_update)
 self.large_window.append(price_update)
 if len(self.small_window)>50:
 self.small_window.popleft()
 if len(self.large_window)>100:
 self.large_window.popleft()
 if len(self.small_window) == 50:
 if average(self.small_window) >\
 average(self.large_window):
 self.long_signal=True
 else:
 self.long_signal = False
 return True
 return False

Creating a Backtester in Python Chapter 9

[316]

The buy_sell_or_hold_something function will check whether we have a10.
long signal or a short signal. Based on the signal, we will place an order and we
will keep track of the paper trading position, cash, and profit and loss. This
function will also record the value of the backtested values of position, cash, and
profit and loss. We will keep track of these values to create a chart of our trading
execution.

def buy_sell_or_hold_something(self, book_event):
 if self.long_signal and self.paper_position<=0:
 self.create_order(book_event,book_event['bid_quantity'],'buy')
 self.paper_position += book_event['bid_quantity']
 self.paper_cash -= book_event['bid_quantity'] *
book_event['bid_price']
 elif self.paper_position>0 and not self.long_signal:
self.create_order(book_event,book_event['bid_quantity'],'sell')
 self.paper_position -= book_event['bid_quantity']
 self.paper_cash -= -book_event['bid_quantity'] *
book_event['bid_price']

 self.paper_holdings = self.paper_position *
book_event['bid_price']
 self.paper_total = (self.paper_holdings + self.paper_cash)

 self.list_paper_position.append(self.paper_position)
 self.list_paper_cash.append(self.paper_cash)
 self.list_paper_holdings.append(self.paper_holdings)
 self.list_paper_total.append(self.paper_holdings+self.paper_cash)

 self.list_position.append(self.position)
 self.holdings=self.position*book_event['bid_price']
 self.list_holdings.append(self.holdings)
 self.list_cash.append(self.cash)
 self.list_total.append(self.holdings+self.cash)

As shown, the signal function will call the two prior functions:11.

 def signal(self, book_event):
 if book_event['bid_quantity'] != -1 and \
 book_event['offer_quantity'] != -1:
 self.create_metrics_out_of_prices(book_event['bid_price'])
 self.buy_sell_or_hold_something(book_event)

Creating a Backtester in Python Chapter 9

[317]

The following function differs from the original function execution that we12.
implemented in Chapter 7, Building a Trading System in Python. This one will
keep track of the profit and loss, position, and the cash:

 def execution(self):
 orders_to_be_removed=[]
 for index, order in enumerate(self.orders):
 if order['action'] == 'to_be_sent':
 # Send order
 order['status'] = 'new'
 order['action'] = 'no_action'
 if self.ts_2_om is None:
 print('Simulation mode')
 else:
 self.ts_2_om.append(order.copy())
 if order['status'] == 'rejected' or
 order['status']=='cancelled':
 orders_to_be_removed.append(index)
 if order['status'] == 'filled':
 orders_to_be_removed.append(index)
 pos = order['quantity'] if order['side'] == 'buy' else
 -order['quantity']
 self.position+=pos
 self.holdings = self.position * order['price']
 self.pnl-=pos * order['price']
 self.cash -= pos * order['price']

 for order_index in sorted(orders_to_be_removed,reverse=True):
 del (self.orders[order_index])

As shown, the following function will handle the market response:13.

def handle_market_response(self, order_execution):
 print(order_execution)
 order,_=self.lookup_orders(order_execution['id'])
 if order is None:
 print('error not found')
 return
 order['status']=order_execution['status']
 self.execution()

The following function will return the profit and loss of the strategy:14.

def get_pnl(self):
 return self.pnl + self.position * (self.current_bid +
self.current_offer)/2

Creating a Backtester in Python Chapter 9

[318]

When we run this example, we will obtain the following chart. We can observe that the
curve is the same as the prior one. This means that the trading system that we created and
the paper trading have the same reality:

We will now modify the market assumptions by changing the fill ratio used by the market
simulator. We are getting a fill ratio of 10%, and we can see that the profit and loss is
profoundly impacted. Since most of our orders are not filled, we will not make money
where the trading strategy was supposed to make money:

Creating a Backtester in Python Chapter 9

[319]

The chart reminds us of the importance of having a fast system. If we place an order, in
most cases, the order is rejected. This will negatively impact the profit and loss of the
trading strategy.

Summary
In this chapter, we highlighted how important backtesting is. We talked about two sorts of
backtesters: a for-loop backtester, and an event-based backtester. We showed the two main
differences and we implemented an example of both. This chapter concludes the creation
path of a trading strategy. We initially introduced how to create a trading strategy idea, and
then we explained how to implement a trading strategy. We followed that by explaining
how to use a trading strategy in a trading system and then we finished our learning
experience by showing how we can test a trading strategy.

In the next chapter, we will conclude this book by talking about your next steps in the
algorithmic trading world.

5
Section 5: Challenges in

Algorithmic Trading
This section covers the challenges faced after your algorithmic trading strategies have been
deployed to the market. It provides examples of some of the common pitfalls faced by
participants and offers potential solutions to them.

This section comprises the following chapter:

Chapter 10, Adapting to Market Participants and Conditions

10
Adapting to Market Participants

and Conditions
So far, we've gone over all the concepts and ideas involved in algorithmic trading. We went
from introducing the different components and players of an algorithmic trading ecosystem
to going over practical examples of trading signals, adding predictive analytics into
algorithmic trading strategies, and actually building several commonly used basic, as well
as sophisticated, trading strategies. We also developed ideas and a system to control risk
and manage it over the evolution of a trading strategy. And finally, we went over the
infrastructure components required to run these trading strategies as well as the
simulator/backtesting research environment required to analyze trading strategy behavior.
At this point in the book, you should be able to successfully develop a deep understanding
of all the components and sophistication needed to build, improve, and safely deploy all
components of an algorithmic trading strategy business stack.

The goal in this final section of the book is to begin to look beyond the deployment and
operation of algorithmic trading strategies by considering things that can go wrong in live
markets or slowly deteriorate as time passes, by trading signal edges vanish, and how new
market participants are added, or more informed participants join the market and less
informed participants leave. Financial markets and market participants are in a constant
state of evolution, so algorithmic trading businesses that are able to evolve over time and in
the face of changing market conditions, adapt to new conditions, and continue to be
profitable, are the only ones that can survive long term. This is an extremely challenging
problem to tackle, but in this chapter, we will go over the hurdles we typically encounter
and offer some guidance on how to tackle them. We will discuss why strategies do not
perform as expected when deployed in live trading markets – and show examples of how
to address those issues in the strategies themselves or the underlying assumptions. We will
also discuss why strategies that are performing well slowly deteriorate in performance, and
then we'll look at some simple examples to explain how to address these.

Adapting to Market Participants and Conditions Chapter 10

[322]

In this chapter, we will cover the following topics:

Strategy performance in backtester versus live markets
Continued profitability in algorithmic trading

Strategy performance in backtester versus
live markets
In this section, let's first tackle a very common problem encountered by a lot of algorithmic
trading participants that lack sophistication in their backtesters/simulators. Since
backtesters are a cornerstone in building, analyzing, and comparing algorithmic trading
strategies irrespective of position holding times, if backtested results are not realized in live
trading markets, it's difficult to get off the ground or continue trading. Typically, the
shorter the position holding period and the larger the trading sizes, the greater the chance
that simulation results are different from results actually achieved in live trading markets.
Backtesters are often the most complex software component in a lot of high frequency
trading (HFT) business because of the need to simulate very accurately. Also, the more
complex or non-intuitive the trading model, the better the simulator needs to be, because it
is often difficult to follow very fast automated trading using complex trading signals,
predictions, and strategies in live markets given that they are not intuitive.

The basic problem boils down to trade prices and trade sizes for an algorithmic trading
strategy not being identical in backtester and live markets. Since a trading strategy's
performance is a direct function of the trade prices and the trade sizes it executes, it's not
hard to see why this issue would cause differences in backtested results and live trading
results, which we will refer to as simulation dislocations from live trading. Sometimes, the
backtester is pessimistic in awarding executions to the trading strategy, or does so at worse
prices than what is achieved in live trading. Such a backtester is pessimistic, and live
trading results can be much better than backtested results.

Adapting to Market Participants and Conditions Chapter 10

[323]

Sometimes, the backtester is optimistic in awarding executions to the trading strategy, or
does so at better prices than what is achieved in live trading. Such a backtester is optimistic
and live trading results can be worse than backtested results. It is possible for the backtester
to either be consistently pessimistic or consistently optimistic, or vary depending on the
trading strategy type, market conditions, time of day, and so on. Backtesters that have a
consistent bias are easier to deal with because, after a few live deployments, you can get an
idea of, and quantify, the pessimism/optimism and use that to adjust expectations from
historical results. Unfortunately, more often than not, backtesters have dislocations that
cause differences in results that are not consistently biased, and which are much harder to
quantify and account for. Let's have a look at the following plot, which represents
the pessimistic backtester:

Adapting to Market Participants and Conditions Chapter 10

[324]

With a pessimistic backtester, live results deviate from simulated results but, overall, the
trend is that live PnLs remain higher than simulated results. Now, let's have a look at the
following plot, which represents the optimistic backtester:

With an optimistic backtester, live results deviate from simulated results but, overall, the
trend is that live PnLs remain lower than simulated results.

Impact of backtester dislocations
Not having a good backtester causes a variety of problems with the historical research and
live deployment of algorithmic trading strategies. Let's look at these in more detail.

Adapting to Market Participants and Conditions Chapter 10

[325]

Signal validation
When we research and develop trading signals, we are able to compare predictions in price
movements with actual price movements realized in the market based on historical data.
This, of course, doesn't necessarily require a fully-fledged backtester, but does require a
historical data playback software. This component, while less complex than a backtester,
still has a decent amount of complexity to it and must be accurate in synchronizing
different market data sources and playing market data back with accurate timestamps and
event synchronization. If the market data played back in historical research platforms is not
identical to what is received in live trading strategies, then the signal predictions and
performance observed in historical research is not realized in live trading and can kill the
profitability of a trading strategy.

Strategy validation
Strategy performance in backtester requires more complexity in the backtester than just the
ability to properly synchronize and play back market data for multiple trading instruments
over historically available market data, which is a requirement for signal validation that we
discussed in the previous section. Here, we need to go one step further and build a
backtester that can actually simulate the behavior and performance of a trading strategy
over historical data as if it were trading in live markets by performing matching like an
exchange would.

We covered all of this in the chapter on backtesting, and it should be clear how complex
building a good backtester can be. When the backtester isn't very accurate, validating
strategy behavior and performance is difficult since it is not possible to be confident of
strategy performance based on the backtester results. This makes the design, development,
improvement, and validation of trading strategies difficult and inaccurate.

Risk estimates
In the chapter on risk management, we use the backtester to quantify and measure the
different risk measures in a trading strategy and trading strategy parameters to get a sense
of what to expect before deploying to live markets. Again, this step requires an accurate
backtester, and the lack of one will cause inaccuracies in measuring expected risk limits
when strategies get deployed to live markets.

Adapting to Market Participants and Conditions Chapter 10

[326]

Risk management system
Similar to problems with quantifying and measuring risk estimates for a trading strategy in
the absence of a very accurate backtester, it is also difficult to build an optimal risk-
management system. Also, we saw in the chapter on risk management that we want to not
only build a risk management system, but also a system of slowly increasing trading
exposure and risk limits after good performance, and lower trading exposure and risk
limits following a poor performance. Without a good backtester, this aspect of trading
strategy development and deployment suffers and causes issues when deployed to live
markets as it deviates from historical expectations.

Choice of strategies for deployment
When we have a pool of different possible trading strategies, different trading signal
combinations, and different trading parameters, typically, we use the backester to build a
portfolio of strategies to deploy to live markets in a way that minimizes risk for the entire
portfolio. This step relies on having a good backtester, the lack of which causes live trading
strategy portfolios to perform poorly and take more risk than historical simulations would
have you believe.

Again, since a good backtester is at the core of this step, without it, live trading strategies
and portfolios do not perform as expected. When backtesters vary in their deviations from
live trading results for different trading strategies and different trading parameters, this
problem can be even worse in the sense that not only do strategies that appear to be
profitable in simulations not perform well in live markets, but we might also be missing out
on strategies that appear to not be as profitable in simulations but actually might perform
quite well if deployed to live markets because the backtester is pessimistic to those specific
trading strategies or parameters.

Expected performance
It should be obvious that the major problem with a backtester that suffers from a lot of
dislocations from live trading is that performance expectations derived from simulation
results do not hold up in live trading. This throws off the signal validation, strategy
validation, risk estimate, risk management, and risk adjustment strategies, but it also
throws off risk-reward expectations. Since trading strategies do not live up to expected
simulation performance, this can often result in the entire algorithmic trading business
failing.

Adapting to Market Participants and Conditions Chapter 10

[327]

Causes of simulation dislocations
Now that we've covered all the issues that an inaccurate backtester can cause in terms of
developing, optimizing, and deploying algorithmic trading strategies and algorithmic
trading businesses, let's explore common causes of simulation dislocations.

Slippage
Slippage refers to the fact that expected trade prices from simulations, and actual trade
prices as realized in live trading, can be different. This obviously can be detrimental to
expected performance from algorithmic trading strategies because it is possible, and often
likely, that trade prices in live markets are worse than what is expected from simulations.
This can be due to historical market data playback issues, underlying assumptions about
the latencies within the trading strategy, or the latencies between trading strategy and
trading exchange, which we will explore shortly.

Another reason can be due to the market impact, where, with simulations, we try to trade
larger sizes than can be traded in live markets without creating a market impact and
inciting reactions from other market participants, such as removing available liquidity,
which exacerbates trade prices in live markets as compared to simulations.

Fees
One major trading cost is trading fees, which are usually fees per traded share/future
contract/options contract levied by the trading exchange and the broker. It is important to
understand what these fees are and account for them in trading strategy performance
analysis, otherwise it might lead to false estimates of expected risk versus reward.

It is important to consider the PnL per contract traded to make sure that the strategy covers
trading fees and profits after fees, which is especially important for high-volume trading
strategies such as HFT or market-making algorithmic trading strategies, which typically
trade a lot of contracts and have lower PnL per contract-traded ratios than some other
strategies.

Adapting to Market Participants and Conditions Chapter 10

[328]

Operational issues
When deploying algorithmic trading strategies to live markets, it is important to execute
the strategy in live markets that are as close to simulation conditions as possible. The key
objective is to try to realize the performance observed in backtesting/simulations in a live
market. It is important to manually interrupt/intervene in live trading strategies as little as
possible, because that can kill algorithmic trading strategies by interfering with, and
deviating from, their expected simulated lifetime performance.

Operationally, it can be difficult to fight the temptation to interfere with live trading
strategies and shut them down early if they are making money, or get scared and shut them
down if they are losing money. For automated trading algorithms, which have been
backtested extensively, manual intervention is a bad idea because simulated results can't be
realized and they affect the expected versus realized profitability of a trading strategy.

Market data issues
Issues with playing back historical market data to trading strategies can become a problem
if the market data that trading strategies observed in live trading is different from what is
observed in simulations. This can be because of differences in the servers used for historical
market data capture versus live trading, the way market data gets decoded in the historical
archiver process versus live market data process, issues in how the data gets time stamped
and stored, or even in the backtester that reads historical data and replays it to the trading
strategy.

It is quite clear that if the market data time series is different in simulations versus live
trading, then all aspects of algorithmic trading strategy suffer/deviate from historical
expectations, and thus, the live trading performance doesn't live up to the simulation
results.

Latency variance
In an algorithmic trading setup, there are many hops between when the market data first
reaches the trading server and when the order flow in response to the new data reaches the
trading exchange. First, the market data feed handler reads it and decodes it, the trading
strategy then receives the normalized market data, and then the strategy itself updates the
trading signals based on the new market data and sends new orders or modifications to
existing orders. This order flow then gets picked up by the order gateway, converted to an
exchange-order-entry protocol, and written to the TCP connection with the exchange.

Adapting to Market Participants and Conditions Chapter 10

[329]

The order finally gets to the exchange after incurring latency equal to the transmission
latency from the trading server to the matching engine at the electronic trading exchange.
Each one of these latencies needs to be accounted for in backtesting trading strategies, but it
can often be a complicated problem. These latencies are most likely not static latency
values, but vary depending on a lot of factors, such as trading signal and trading strategy
software implementation, market conditions, and peak network traffic, and if these
latencies are not properly modeled and accounted for in historical simulations, then live
trading strategy performance can be quite different from expected historical simulation
results, causing simulation dislocations, unexpected losses in live trading, and impaired
trading strategy profitability, possibly to the point where the strategies cannot be run
profitably.

Place-in-line estimates
Since electronic trading exchanges have different possible models for matching algorithms,
such as FIFO and pro-rata, if a trading strategy's performance depends on having a good
place in the line, that is, other market participants' sizes ahead of the strategy's orders at the
same price level, then it is important to accurately simulate that. In general, if the backtester
is too optimistic in estimating a trading strategy's order's priority in the limit order book as
compared to the rest of the market participants, that is, it assumes our order is ahead of
more market participants than it actually is in live markets, this leads to false and inflated
expectations of trading strategy performance.

When such trading strategies are deployed to a live market, they often do not realize the
expected simulated trading performance, which can hurt the trading strategy profitability.
Modeling an accurate place in line is often a difficult problem and requires a lot of research
and careful software development to get correct.

Market impact
Market impact refers to what happens when our trading strategy is deployed to live
markets as compared to when it is not. This is basically to quantify and understand the
reactions of other market participants in response to our order flow. Market impact is
difficult to anticipate and simulate, and gets progressively worse the more the trading
strategy is scaled up. While this is not a problem when algorithmic trading strategies are
first deployed with very small risk exposure, it becomes an issue over time as they are
scaled up.

Adapting to Market Participants and Conditions Chapter 10

[330]

Profitability does not increase linearly as risk is increased. Instead, the rate of increase of
profitability slows down as size is increased but risk continues to increase, and that is due
to market impact reasons. Eventually, strategies reach a size where large increases in risk
still only marginally increase profitability, which is where the strategy has reached the limit
of what it can be scaled up to. This is, of course, if we account for market impact when
analyzing expected risk versus reward. Here, inaccuracies will always end up causing the
trading strategy to take a lot more risk for very little extra profit and might end up causing
a seemingly profitable trading strategy to massively underperform when deployed and
scaled up in live markets.

Tweaking backtesting and strategies in response
to live trading
Now that we've discussed the causes and impact of simulation dislocations from live
trading performance, let's explore possible approaches/solutions to those problems if the
algorithmic trading strategies deployed to live markets do not match th anticipated
performance.

Historical market data accuracy
Something that should be obvious at this point is that the quality and quantity of the
historical market data available is a key aspect in being able to build a profitable
algorithmic trading business. For this reason, most market participants invest a lot of
resources in building a market data capture and normalization process that is extremely
accurate, and software implementation that is bug free and able to faithfully capture and
replay live market data in historical mode to match exactly what algorithmic trading
strategies will observe when they are deployed in live markets. Usually, if trading
strategies are not performing in live markets as expected, this is the first place to start. By
adding an extensive amount of instrumentation/recording to what market data update
trading strategies observe, and comparing what is observed in simulations and live trading,
it is relatively straightforward to find and fix underlying issues.

Adapting to Market Participants and Conditions Chapter 10

[331]

There may be issues in the historical market data recording setup, the live market data
decoding and delivery setup, or both. Sometimes, latency sensitive trading strategies have a
normalized market data format in live trading that is different from what is available in
historical recording by streamlining market data information delivered to live trading
strategies to be as compact and as fast as possible, in which case this can be another reason
why live market data updates differ from historical market data updates. If issues are
discovered in this step, first fix those issues in the historical and/or live market data
protocol. Following that, the trading strategy results are recomputed, recalibrated if
needed, and then redeployed to live markets to observe whether fixing these issues helps to
reduce simulation dislocations.

Measuring and modeling latencies
After confirming that there are no outstanding market data issues, the next step is to look
into the underlying latency assumptions in the backtester. In a modern algorithmic trading
setup, there are many hops in between the exchange matching engine that generates market
data and the trading strategy that receives the decoded and normalized market data, and
then between the trading strategy that decides to send the order flow out to the exchange
until it is actually received by the exchange matching engine. With modern improvements
in server hardware, network switch, network card, and kernel bypass technologies, it is
possible to record the timestamps between each of these hops very precisely in
nanoseconds and then use those measurements to test the underlying latency
assumptions/estimates used in the backtester.

In addition, modern electronic trading exchanges provide a lot of different timestamps that
are also measured very precisely in the various hops within their own matching engine
setup. These measurements include when an order request was received by the trading
exchange, when it was picked up by the matching engine to be matched or added to the
limit order book, when the private order notification and public market data update were
generated, and when the corresponding network packets left the trading exchange
infrastructure. Properly recording these timestamps provided by the exchange, using those
measurements to gain insight into the conditions surrounding our orders getting matched,
and calibrating the backtester on that basis, can help in addressing simulation dislocations.
Each latency measurement between different hops is a distribution of possible values that
vary by time, trading instrument, trading exchange, and trading strategy.

Adapting to Market Participants and Conditions Chapter 10

[332]

Typically, most simulators start with a static latency parameter for each one of these
measurements, which is the mean or median of the distributions. If the variance for a
specific latency measurement is very high, then a single static parameter no longer suffices
and at that point one must use a more sophisticated latency modeling approach. One
approach can be to use the mean latency as observed in live trading, but add an error term
to the latency based on what is observed in live trading, while the more sophisticated
approach is to implement features that can capture periods/conditions of higher or lower
latencies and dynamically adjust those in the backtester. Some intuitive features would be
to use the frequency of market data updates, frequency of trades, or the magnitude and
momentum of price moves as a proxy for increased latency.

The idea behind this is that during periods of higher activity either due to busy market
conditions and large price moves, or when lots of participants are sending a higher-than-
normal amount of order flow to the exchange and, in turn, generating a larger-than-normal
amount of market data, many of the latency measures are likely to be higher than normal
and, in fact, be a function of increased market activity. This also makes sense because,
during these periods, the trading exchange has to process more order flow, perform more
matching per order flow, and generate and disseminate more market data for every order
flow, so there are more delays due to processing times. Similarly, on the algorithmic
trading strategy side, more market data means more time to read, decode, and normalize
incoming market data updates, more time to update limit order books and update trading
signals, more order flow generated to deal with the increased market activity, and more
work done by the order gateway to deal with the increased order activity.

Modeling dynamic latencies is a difficult problem to solve in a backtester, and most
sophisticated participants invest a lot of resources trying to get it right in addition to trying
to build a trading infrastructure and trading strategies that have lower latency variance to
begin with. To summarize this section, if simulation dislocations are associated with errors
in latency assumptions/modeling, then the first step is to collect as many accurate
measurements between each hop in the trading system and trading exchange as possible
and build intelligence to faithfully reproduce those in historical simulations.

Improving backtesting sophistication
In the previous section, we looked at the importance of understanding and modeling
latencies in an algorithmic trading setup correctly when backtesting trading strategies. If
after carefully understanding, accounting for, and modeling latency variances in the
algorithmic trading setup in historical simulations and redeploying the algorithmic trading
strategy to live markets, we are still noticing simulation dislocations that are causing a
deviation in strategy performance in live markets from what is expected, we can look into
further backtesting sophistication.

Adapting to Market Participants and Conditions Chapter 10

[333]

Modern electronic exchangers provide a lot of information about every aspect of the
matching process, beyond just providing accurate timestamps. There are a lot of
transactions that take place during a matching event which, if not accounted for in a
backtester, can cause a lot of simulation dislocations because they participate in matching
events and can fundamentally change when a strategy can expect its orders to get executed.
Non-conforming transactions such as self-match-prevention cancellations, stop-order
releases during matching events, iceberg orders with hidden liquidity that over-execute or
are replenished after being fully executed, matches during auction events, and implied/pro-
rata matching considerations, can cause simulation dislocations if not correctly detected
and accounted for in the simulator.

Different asset classes come with their own set of matching rules and complications. Dark
pools, hidden liquidity, price improvements, hidden counter parties, and a lot of other
factors can end up creating simulation dislocations and ultimately cause an algorithmic
trading strategy to fail. Understanding all these rules, implementing them in software, and
building accurate simulations on top of that is a very difficult problem to solve, but can
often be the difference between success and failure in the algorithmic trading business.

Adjusting expected performance for backtester bias
We've looked at a lot of possible avenues for finding and fixing issues in the simulation and
historical market data playback framework. If we are still observing differences in trading
strategy performance in live markets as compared to simulations, then another possible
solution to explore would be to adjust the expected performance results as obtained from
simulations to account for the backtester bias.

As we discussed before, the backtester bias can be optimistic or pessimistic in nature and
can be a constant bias or a bias that varies by trading strategy type, by strategy parameters,
or by market conditions. If the bias can be isolated to be constant for a specific strategy type
and strategy parameters, then it is able to collect simulation dislocation results from live
trading results and organize them per strategy and per strategy parameter set. These
expected dislocation values can then be used with the simulated results to estimate true live
trading results. For example, if an algorithmic trading strategy with specific parameters
always performs 20% worse in live trading as compared to simulation results because of
simulation dislocations, we can account for that, reduce its simulated results by 20%, and
re-evaluate it. We can take this estimation methodology one step further and try to model
the magnitude of backtester optimism/pessimism as a function of traded volume and
market conditions, such as how busy the market is or how much the prices changed.

Adapting to Market Participants and Conditions Chapter 10

[334]

In this manner, it is possible to build a system that takes simulated results for trading
strategies and then takes live trading results for the same strategies and tries to quantify the
simulation dislocations and provide estimates of true expected live trading performance.
These methods of adjusting expected live trading performance are not ideal; they require
feedback from running trading strategies in live trading, which might cause losses and, at
the end of the day, is just an estimation. Ideally, we want a backtester capable of providing
accurate simulation results, but since that is an extremely difficult and sometimes
impossible task, this estimation method is a good middle ground for dealing with
simulation dislocations and continuing to build up and manage an algorithmic trading
business.

Analytics on live trading strategies
Another solution to dealing with live trading performance deviating from the expected
simulation performance is to have sophisticated analytics on live trading strategies. This is
another way of saying that instead of relying completely on backtesting performance and
behavior, you can also invest in adding enough intelligence and sophistication directly to
live trading strategies to reduce the likelihood of simulation dislocations derailing an
algorithmic trading business. This, again, is an imperfect approach to solving the problem,
but can be a good alternative to help with limitations and errors in backtesters. The idea is
to deploy trading strategies to live markets with very small exposure, collect statistics on
each strategy action, and properly instrument and collect statistics on why those decisions
were made.

Then we resort to an extensive Post Trade Analytics (PTA) framework to dig through these
strategy action records and classify winning and losing positions and statistics on strategy
actions that led to these winning and losing positions. Often, performing this kind of PTA
on trading performance from live trading can reveal a lot of insight about
problems/limitations for that particular trading strategy. These insights can be used to
guide the development and improvement of the algorithmic trading strategy and improve
profitability over time. In many ways, this boils down to the approach of starting trading
strategies at very small risk exposures with intuitive parameters and using feedback from
live trading to improve the strategy's performance.

This is not a perfect approach, since it requires the trading strategies to be simple enough
where they can be run under live trading conditions with easily understood parameters, in
addition to the fact that we might have to run a trading strategy that is not profitable in live
market conditions for a short time, while accruing losses that we don't want.

Adapting to Market Participants and Conditions Chapter 10

[335]

Continued profitability in algorithmic trading
In the first half of this chapter, we looked at what common issues you can expect when
deploying algorithmic trading strategies that have been built and calibrated in simulations
and appear to be profitable. We discussed the impact and common causes of simulation
dislocation, which cause deviation in trading strategy performance when deployed to live
trading markets. We then explored possible solutions to dealing with those problems and
how to get algorithmic trading strategies off the ground and start scaling up safely to build
a profitable algorithmic trading business. Now, let's look at the next steps after getting up
and running with the algorithmic trading strategies in live trading markets. As we
mentioned before, live trading markets are in a constant state of evolution, as participants
enter and exit markets and adapt and change their trading strategies.

In addition to the market participants themselves, there are numerous global economic and
political conditions that can influence price movements in global and/or local asset classes
and trading instruments. It is not enough to just be able to set up an algorithmic trading
business; it is also mandatory to be able to adapt to all of these possible changing conditions
and market risk and continue to stay profitable. That is an extremely tough goal; over time,
previously profitable and sophisticated market participants have had to shut down their
trading businesses and exit the market, making algorithmic and quantitative trading one of
the most challenging businesses out there. In this section, let's explore what causes winning
trading strategies to die out after first being profitable.

We will explore solutions that can help us to maintain and improve trading strategy
profitability after the initial deployment to live trading markets. Finally, we will wrap up
this chapter by discussing adapting to changing market conditions and market participants,
that is, dealing with the ever-evolving nature of the algorithmic trading business and how
to work on building an algorithmic trading business that survives for a very long time.

Profit decay in algorithmic trading strategies
First, we need to understand what factors cause trading strategies that were initially
profitable to slowly decay in profitability and eventually no longer be profitable at all.
Having a good understanding of what possible factors can cause a currently profitable
algorithmic trading business to deteriorate over time can help us put checks and re-
evaluation mechanisms in place to detect these conditions and deal with them in time in
order to maintain profitability of the algorithmic trading business. Now let's look at some of
the factors involved in profit decay for algorithmic trading strategies.

Adapting to Market Participants and Conditions Chapter 10

[336]

Signal decay due to lack of optimization
The signals used in the trading strategy are obviously one of the key aspects that drive
trading strategy performance. Trading signals come with a maintenance aspect that
requires them to be constantly re-evaluated and re-adjusted to stay relevant/profitable. This
is partially because trading signals with constant parameters cannot perform equally well
through different market conditions and require some tweaking or adjustment as market
conditions change.

Sophisticated market participants often have elaborate optimization/re-fitting setups meant
to continuously adjust and adapt trading-signal parameters to deliver maximum trading
performance and advantages. It is important to not just find trading signals that are
performing well over recent days, but to also set up a systematic optimization pipeline to
adapt trading signals to changing market conditions to keep them profitable.

Signal decay due to absence of leading participants
A lot of trading signals capture specific market participant behavior and predict future
market price moves. A simple example would be trading signals that try to detect order
flow coming from high-frequency trading participants and use that to get a sense of what
portion of available liquidity is from very fast participants with the ability to add and
remove liquidity at prices very fast, sometimes faster than other participants can react and
trade against.

Another example would be trading signals trying to capture participant behavior in related
markets, such as cash markets or options markets, to gain an advantage in other related
markets, such as futures markets, for similar trading instruments. Sometimes, if a large
amount of market participants that these trading signals capture and leverage exit the
market, become more informed, or are able to disguise their intentions better, then these
trading signals that depend on these participants no longer retain their predictive abilities
and profitability. Since market participants and market conditions change all the time,
signal decay due to absence of market participants is a very real and very common
occurrence and something that all profitable market participants have to account for and
deal with.

Adapting to Market Participants and Conditions Chapter 10

[337]

This involves having teams of quantitative researchers always searching for new predictive
trading signals that are different from existing trading signals to counteract the possibility
of currently profitable trading signal decay. The signal-parameter optimization aspects we
covered in the previous section also help to alleviate this problem by using existing signals
but with different parameters to get information from new participants, as information
gleaned from existing participants decays over time.

Signal discovery by other participants
In the same way that we are continuously in the process of optimizing existing trading
signal parameters as well as searching for new trading signals, all market participants are
also searching for new trading signals. Often other market participants also discover the
same trading signals that our trading strategies are using to be profitable. This can cause
the market participants to react in a couple of different ways, one way would be to change
their trading strategy's order flow to disguise their intent and make the trading signal no
longer profitable for us.

Another reaction can be that these participants start using the same trading signal to run
trading strategies very similar to our own, thus crowding the market with the same trading
strategy and reducing our ability to scale up the trading strategy, leading to reduced
profitability. It is also possible for the market participant to leverage better infrastructure or
be better capitalized, and we can lose our trading edge completely and get squeezed out of
the market. While there is no real way to ban other participants from discovering the same
trading signals that are being used in our algorithmic trading strategies, the industry
practices have evolved over time to reflect the extremely secretive nature of the business,
where firms typically make it difficult for employees to go work for a competitor. This is
done through non-disclosure agreements (NDAs), non-compete agreements (NCAs), and
strictly monitoring the development and use of proprietary trading source code.

The other factor is the complexity of the trading signals. Typically, the simpler a trading
signal is, the more likely it is to be discovered by multiple market participants. More
complex trading signals are less likely to be discovered by competing market participants
but also require a lot of research and effort to discover, implement, deploy, monetize, and
maintain. To summarize this section, losing the trading edge when other participants
discover the same signals that are working for us is a normal part of the business, but there
is no direct solution to this problem, other than trying our best to keep discovering new
trading signals ourselves to stay profitable.

Adapting to Market Participants and Conditions Chapter 10

[338]

Profit decay due to exit of losing participants
Trading is a zero-sum game; for some participants to make money, there must be less
informed participants that lose money to the winning participants. The problem with this is
that participants that are losing money either get smarter or faster and stop losing money,
or they continue losing money and eventually exit the market altogether, which will hurt
continued profitability of our trading strategies and can even get to a point where we
cannot make any money at all. If our trading strategies are making money by trading
against these less informed participants, and they either become better informed and stop
losing money or they leave the market, either we lose our trading signal advantage that
relied on their behavior, or the competition gains edge on us causing our trading strategies
to go from being profitable to losing money. Intuitively, since no participant that is losing
money continuously is likely to continue trading, it seems likely that this is a business that
is eventually going to die out for everyone.

This doesn't happen in practice because large markets are composed of a very large number
of participants with different trading strategies, different trading horizons, and different
information. Also, participants exit the markets and new participants enter the markets
every day, creating new opportunities for all participants to capitalize on. To summarize,
since market participants are continuously evolving and new participants enter the market
and existing participants leave the market, it is possible for us to lose those participants that
provide the trading signals that we use in our trading strategies. To deal with this, we have
to constantly search for new trading signals and diversify trading signals and strategies to
capture more market participants' intentions and predict market price moves.

Profit decay due to discovery by other participants
We discussed the possibility of and the impact of other market participants discovering our
trading signals and using the same signals that our trading strategies utilize to make
money. Similar to other market participants discovering the same trading signals that our
trading strategies use and hurting our profitability, it is possible for other market
participants to discover our order flow and strategy behavior and then find ways to
anticipate and leverage our trading strategy's order flow to trade against us in a way that
causes our trading strategies to lose money.

Adapting to Market Participants and Conditions Chapter 10

[339]

Other ways other market participants can discover our order flow and anticipate market
price moves in different asset classes or other trading instruments, perhaps for stat arb or
pair-trading strategies or cross-asset strategies. This can lead to reduced profitability or it
can worsen to a point where it is no longer feasible to continue running the specific
algorithmic trading strategy. Sophisticated market participants often invest a lot of thought,
design, and resources to make sure that the algorithmic trading strategy behavior does not
immediately give away the strategy's behavior in a way that can be used by other market
participants to hurt our trading profitability.

This often involves the use of GTC orders to build queue priority in FIFO markets, using
icebergs to disguise the true liquidity behind orders, using stop orders to be triggered at
specific prices ahead of time, using Fill and Kill or Immediate or Cancel orders to mask the
true liquidity behind orders being sent to the exchange, and complicated order-execution
strategies to hide the trading strategy's true intention. Obviously, trying to hide intentions
from other market participants can be taken too far, as we saw in the case of Spoofing,
which is an illegal algorithmic trading practice. In summary, to use sophisticated trading
strategies in a very competitive and crowded market, the strategy implementation can often
be a lot more complex than it needs to be for the purposes of mitigating information leak
and reduced profitability.

Profit decay due to changes in underlying
assumptions/relationships
All trading signals and trading strategies are built on top of certain underlying
assumptions, such as assumptions about market participant behavior, and assumptions
about interactions and relationships between different asset classes and different trading
instruments. When we built basic trading strategies, we relied on the underlying
assumptions that parameters such as 20 days and 40 days were correct for our trading
instrument. With sophisticated trading strategies, such as volatility adjusted trading
strategies, economic-release-based trading strategies, pair-trading strategies, and statistical
arbitrage strategies, there are more underlying assumptions about the relationship between
volatility measures and trading instruments, the relationship between economic releases
and impact on economy, and price moves in trading instruments.

Adapting to Market Participants and Conditions Chapter 10

[340]

Pair-trading and statistical arbitrage trading strategies also make assumptions about the
relationship between different trading instruments and how it evolves over time. As we
discussed when we covered statistical arbitrage trading strategies, when these relationships
break down, the strategies no longer continue to be profitable. When we build trading
signals and algorithmic trading strategies, it's important to understand and be mindful of
the underlying assumptions that the specific trading signals and the specific trading
strategies depend on to be profitable. Market conditions and participants change all the
time, hence it is possible that the assumptions that were true when these trading strategies
were first built and deployed to live markets no longer hold true during certain times, or
might not hold true moving forward.

When this happens, it is important to have the ability to detect, analyze, and understand
what strategies will not perform as expected. It's also important to have a diverse set of
trading signals and trading strategies. If we don't have enough diverse trading signals and
strategies with non-overlapping underlying assumptions, it is possible that trading can get
shut down completely. And if the assumptions are never true after that, it could be the end
of the algorithmic trading strategy business. To summarize, the only way to deal with a
situation where the trading strategies' underlying assumptions no longer hold is to have the
ability to detect and understand such periods, and have a diverse set of trading signals and
strategies capable of running through different kinds of market conditions and changing
participants.

Seasonal profit decay
In the previous section, we talked about how algorithmic trading strategies have many
underlying assumptions. Seasonality, which is a concept we covered in one of our chapters,
is an assumption that dictates a trading strategy's profitability. For a lot of asset classes,
their price moves, volatility, relationships with other asset classes, and expected behavior
vary quite predictably. Trading signals and trading strategies need to account for these
differences due to seasonal factors and adjust and adapt accordingly; without that, the
profitability can vary over time and might not live up to the expected performance.
Properly understanding the seasonality factors involved and the impact on the trading
strategy performance is important when building and running a long-term algorithmic
trading strategy business.

Adapting to Market Participants and Conditions Chapter 10

[341]

To avoid seasonal profit decay, sophisticated market participants have special trading
signals and strategies in place to detect and adapt to seasonal market conditions and
relationships between different contracts and trade profitably through all the different
seasonal trends. Seasonal profit decay is a normal part of trading strategies that deal with
asset classes and/or trading instruments that have seasonal trends in behavior and cross-
asset relationships, and it is important to collect large amounts of data and build analytics
to understand and manage seasonal trends to maximize profitability.

Adapting to market conditions and changing
participants
Now that we've discussed all the different factors that cause the profitability of algorithmic
trading strategies to decay over time, or because of changes in market participants'
behavior or market conditions, in this section we will go over possible approaches and
solutions to handling these conditions and maintaining the long-term profitability of
algorithmic trading strategies.

Building a trading signals dictionary/database
In the previous section, we discussed the factors that causes profitable trading strategies to
die, which include because the predictive power of trading signals died out over time,
either due to lack of parameter optimizations, discovery by other market participants,
violations of underlying assumptions, or seasonal trends. Before we explore optimizing
trading signals and what that pipeline looks like, one component that is an important part
of any quantitative research platform is called the trading signals dictionary/database. This
component is a large database containing statistics of different trading signals and different
trading signal parameter sets over years of data.

The statistics that this database contains are primarily ones to capture the predictive
abilities of these signals over their prediction horizon. Some simple examples of such
metrics can be the correlation of the trading signal value with the price movements in the
trading instrument which this trading signal is meant for. Other statistics can be variance in
the predictive power over days, that is, how consistent this trading signal is over a set
amount of days to check whether it varies wildly over time.

Adapting to Market Participants and Conditions Chapter 10

[342]

In this database, there can be one entry per day or multiple entries per day for different
time periods for every <signal, signal input instruments, signal parameters> tuple. As you
can imagine, this database can grow to be very large. Sophisticated algorithmic trading
participants often have database results going back several years for thousands of trading
signal variants as well as complex systems to compute and add entries to this database with
every additional day of market data recorded. The main advantage of having such a
database is that, as market conditions change, it is very easy to query this database to
understand and analyze which trading signal, signal input, and signal parameter sets do
better than others in different market conditions. This helps us to analyze why certain
signals might not be performing well in current market conditions, see which ones would
have done better, and build new and diverse trading strategies based on those
observations.

In a lot of ways, having access to a comprehensive trading signal dictionary/database
allows us to quickly detect changing market conditions/participants by comparing the
trading signal performance individually across training and testing history to see whether it
is deviating from historical expectations. It also helps us to adapt to changing market
conditions/participants by letting us quickly query the database for historical signal
performance to see what other signals would have helped or worked better. It also answers
the question of whether the same trading signal with same trading instrument input, but
with different trading signal parameters, would have done better than the current
parameter set being used in live trading.

Investing in setting up a research-platform component that can compute results across
different trading signals, signal instrument input, signal parameters, signal prediction
horizon, time periods over years of tick data, and then storing it in an organized manner
can help you to understand and handle a lot of the factors that cause trading-signal-profit
decay in algorithmic trading strategies deployed to live markets and facing changing
market conditions.

Adapting to Market Participants and Conditions Chapter 10

[343]

Optimizing trading signals
In section, we discussed that trading signals with static input cannot deliver profitable
results consistently, given that market conditions and market participants evolve over time.
In the previous section, we saw how having a large quantitative system that can
continuously compute and store results for different trading signals over time can help us
to deal with this. Another component that should be part of a sophisticated algorithmic
trading business' arsenal is a data-mining/optimization system capable of taking existing
trading signals, building a very large number input instrument and parameter
combinations, and then trying to optimize over that very large population of similar, but
slightly different, trading signals of different prediction horizons over certain time periods
and summarizing the results to find the best one. In essence, this is similar to the trading
signals dictionary/database setup we discussed before, but the purpose here is to build and
try variations of signals that the researcher does not need to provide manually and then
find better variants than what they can come up with intuitively/manually.

This is often necessary to bridge the gap between what trading signals and parameters
researchers believe should work intuitively and what is optimal and also helps us to
discover trading signals, input, and parameter combinations that might otherwise be
overlooked. This system can involve relatively straightforward methods, such as grid
searching over permutations of different signals and parameter values, or can be quite
advanced and involve optimization techniques, such as linear optimization, stochastic
gradient descent, convex optimization, genetic algorithms, or maybe even non-linear
optimization techniques. This is a very complex system that has many sub-components,
such as a trading-signals and parameters-permutation generator, signal evaluator,
quantitative measures of signal predictive abilities, signal performance summary
algorithms, grid-searching methods, possibly advanced optimization implementations and
components to analyze and visualize summary statistics for trading signal performance.

This is, however, an important optimization platform/system that will help prevent trading
signal decay after being deployed to live trading markets, by letting us proactively adjust
and adapt to changing market conditions and maintain profitability, and can often increase
profitability over time by helping us to find better variants of trading signals than the ones
we started with. Advanced market participants invest in massively scalable cloud/cluster
computing systems to run these optimizations around the clock to look for better signals.

Adapting to Market Participants and Conditions Chapter 10

[344]

Optimizing prediction models
Most trading strategies in modern electronic trading exchanges employ more than a single
trading signal, generally using at least a handful of trading signals, all the way up to
hundreds of trading signals inside a single trading strategy. These trading signals interact
with each other in numerous complex ways and it is often difficult to understand, analyze,
and optimize these interactions. Sometimes these trading signals interact with each other
through complex machine learning models, which makes it even more difficult to
intuitively understand all the different interactions possible.

Similar to how we analyze trading signals over a larger search space using complex
principles and methods from linear algebra, calculus, probability, and statistics, we also
need a similar system for trading strategies. This system has to be capable of testing over a
huge space of possible interactions between different trading signals and optimizing these
interactions to find the optimal trading signal combination models. A lot of the possible
techniques that can be used to optimize trading signals can also sometimes be directly used
to optimize combinations of trading signals. However, the only thing to understand is that
the size of the search space here is a function of how many trading signals are being
combined in the final trading model.

Another consideration is the optimization method used to optimize the prediction model,
which is a combination of individual trading signals. For complex methods with a lot of
trading signals, this complexity can increase exponentially and become unsustainable very
quickly. Sophisticated quantitative trading firms will use a combination of large
cloud/cluster-computing systems, smart parallelization pipelines, and super-efficient
optimization techniques to optimize their prediction models continuously with large
datasets. Again, this is all in an effort to deal with changing market conditions and trading
participants, and always have the optimal signals and signal combinations possible to
maximize trading profitability.

Optimizing trading strategy parameters
Remember that a trading signal has input parameters that control its output/behavior.
Similarly, prediction models, which are combinations of trading signals, have
weights/coefficients/parameters that control how trading signals interact with each other.
Finally, trading strategies also have many parameters that control how trading signals,
predictive models, and execution models work together to send the order flow to the
trading exchange in response to incoming market data, how positions are initiated and
managed, and how the actual trading strategies behave. This is the final finished trading
strategy that gets backtested and deployed to live trading markets.

Adapting to Market Participants and Conditions Chapter 10

[345]

Let's discuss this in the context of a trading strategy we're already quite familiar with. For
example, in the trading strategies we saw in Chapter 5, Sophisticated Algorithmic Strategies,
there were static parameters as well as volatility-adjusted dynamic parameters that
controlled thresholds for buy/sell entries, thresholds to control over-trading, thresholds to
lock in profits/losses, parameters that controlled position increase/decrease, and
parameters/thresholds that controlled the strategy's trading behavior as a whole. As you
can imagine, different trading strategy parameter sets can produce vastly different trading
results in terms of PnLs and also in terms of risk exposure that the trading strategy is
willing to take, even if the trading signals or predictive models themselves do not change.

Another way of thinking about this is that individual trading signals provide opinions
about future market price moves, while predictive models combine many different trading
signals with different opinions and produce a final opinion about future/expected market
price moves. Finally, it is the trading strategy that takes these predictions and converts that
into the outgoing order flow to be sent to the exchange to perform trades and manage
positions and risk in a way that converts predicted price moves into actual dollars, which is
the final objective of all algorithmic/quantitative trading strategies.

Trading strategy parameters are optimized using similar infrastructures, components, and
methods to optimize trading signals and predictive models, the only difference is that here
the optimization objectives are PnL and risk instead of predictive ability, which is used to
evaluate trading signals and predictive models. Continuously evaluating and optimizing
trading strategy parameters is another important step in adapting to changing market
conditions/participants and staying consistently profitable.

Researching new trading signals
We've discussed in considerable detail the impact and causes of profit decay for existing
trading signals and importance of continuously searching for new sources of trading
edge/advantage in terms of researching and building new trading signals. As mentioned, a
lot of market participants have entire teams of quantitative researchers implementing and
validating new trading signals full-time to achieve this. Searching for new trading signals,
or alpha, is an extremely difficult task, and is not a well-structured or well-known process.

Adapting to Market Participants and Conditions Chapter 10

[346]

Trading signal ideas are brainstormed from live trading analytics, by inspecting periods of
losses, or by inspecting market data and interactions between market data, market
participants, trading signals, and trading strategies during those times. Based on what is
observed and understood from this inspection/analysis, new trading signals are
conceptualized based on what appears like it would have helped avoid losing positions,
decrease the magnitude of losing positions, help produce more winning positions, or
increase the magnitude of winning positions. At this point, the new trading signal is just an
idea with no quantitative research or proof to back it up. The next step is to implement the
trading signal, then the values output by the trading signals are tweaked and validated to
understand its predictive abilities similar to what we discussed in the section on trading
signals database.

If the newly-developed trading signal seems to show some potential/predictive abilities, it
passes the stage of prototyping and is forwarded to the trading signal optimization
pipeline. Most trading signals never make it past the prototype stage, which is part of what
makes developing new trading signals extremely challenging. That is often because what
makes intuitive sense does not necessarily translate into useful/predictive trading signals.
Or the newly-conceptualized trading signal turns out to be quite similar in predictive
abilities to already-developed signals, in which case it is dropped since it doesn't offer any
new predictive abilities. If it makes it to the optimizing step, then we find the best variants
of the newly-developed trading signal and they are forwarded to the step of being added to
predictive models. Here, it interacts with other pre-existing trading signals. It might take
some time and many iterations before we find the correct method to combine the new
trading signal with other predictive trading signals to find a final predictive model that is
better than any other. After that step, the new trading signal is used in a final trading
strategy with strategy parameters that undergo another round of evaluation and
optimization before the final evaluation, where we try to determine whether the addition of
the new trading signal improves the profitability of our trading strategies.

We saw how much time and resources need to be invested from brainstorming a new
trading signal all the way to making it into a final trading strategy where it can improve
profitability. It should be obvious that new trading signals have to pass many intermediate
validation and optimization stages, compete with other pre-existing and well-known
trading signals, and then interact with other trading signals in a way that improves PnLs by
adding new value to the trading strategy's ability to trade profitability. In many ways, new
trading signals have to go through a survival pipeline very similar to evolution and natural
selection – only the best and fittest trading signals survive to make it to live trading
strategies, and others die out. This is what makes developing new trading signals so
difficult and a task with a very low probability of success. However, researching new
trading signals is mandatory for all algorithmic trading business to compete and stay
profitable, making the best quants the most sought-after employees in all
algorithmic/quantitative trading businesses in the industry.

Adapting to Market Participants and Conditions Chapter 10

[347]

Expanding to new trading strategies
Similar to why it's important to continuously research and generate new trading signals to
stay competitive and build an algorithmic trading business that stays profitable for a long
period of time, effort must be made to build new trading strategies that add value to the
trading strategies that currently exist and are being run in live markets. The idea here is
that since trading strategy profitability is affected by a lot of factors, ranging from trading
signal and trading strategy decay, improvements made by competing market participants
and changes in market conditions that affect underlying assumptions for certain strategies
may no longer hold true. In addition to continuously optimizing existing trading strategy
signals and execution parameters, it's also necessary to invest resources in adding new,
uncorrelated trading strategies that make money in the long run but perform differently.
These new strategies should counteract the possibility that some trading strategies will go
through periods of reduced profitability or diminishing profitability due to market
conditions or seasonal aspects.

Similar to researching and building new trading signals that interact with other trading
signals to add non-overlapping predictive powers, we need to build new trading strategies
that interact with other pre-existing trading strategies to add non-overlapping sources of
profit. It is important that newly-developed trading strategies make money during periods
where other trading strategies might be losing money, and that newly-developed trading
strategies don't also lose money when other trading strategies are losing money. This helps
us to build up a diverse pool of trading strategies that rely on different trading signals,
market conditions, market participants, relationships between trading instruments, and
seasonal aspects. The key is to build a diverse pool of available trading strategies that can
be deployed to live markets in parallel with the objective of having enough intelligent
trading strategies running. This helps in dealing with changing market
participants/conditions, which can be handled better under the assumption that since the
trading strategies are based on different signals/conditions/assumptions, it is unlikely for
all of them to decay simultaneously, thus reducing the probability of significant profit
decay and of complete shut-down of the algorithmic trading business.

Trading strategies that we've covered in previous chapters that complement each other
include trend-following strategies combined with mean-reversion strategies, since they
often have opposing views on markets that are trending/breaking out. A slightly less
intuitive pair would be pairs-trading and stat-arb trading strategies, since one relies on a
co-linear relationship between different trading instruments holding and the other relies on
a co-related lead-lag relationship holding between different trading instruments. For event-
based trading strategies, it is better to deploy them simultaneously with their trend
following as well as mean reversion bets. The more sophisticated market participants
usually have combinations of all of these trading strategies with different trading signals
and parameters deployed to different asset classes over multiple trading exchanges.

Adapting to Market Participants and Conditions Chapter 10

[348]

Thus, they maintain an extremely diverse range of trading exposure at all times. This helps
to deal with issues of profit decay in trading signals and trading strategies, and optimize
risk versus reward, but we will explore that more in the next section.

Portfolio optimization
In the previous section, we discussed the advantages of having a diverse set of trading
strategies that rely on different trading signals. Here, each trading strategy is profitable by
itself, but each one's performance is slightly different depending on market conditions,
market participants, asset class, and time periods, which are, to a large extent, un-correlated
to each other. To recap, the benefits are greater adaptability to changing market
conditions/participants and a better risk-versus-reward profile for the entire portfolio. This
is because all strategies do not lose money simultaneously, which would lead to very large
drawdown across the entire portfolio of trading strategies deployed to live trading markets.
Say we have a diverse set of trading strategies, how do we decide how much risk to allocate
to each trading strategy? That is a field of study known as portfolio optimization, which has
entire books dedicated to understanding the different methods involved.

Portfolio optimization is an advanced technique for algorithmic/quantitative trading, so we
won't cover it in too much detail here. Portfolio optimization is the technique of combining
different trading strategies with different risk-reward profiles together to form portfolios of
trading strategies which, when run together, provide optimal risk-reward for the entire
portfolio. By optimal risk-reward, we mean it delivers maximum returns while trying to
minimize the amount of risk taken. Obviously, risk versus reward is inversely proportional,
so we try to find the optimal reward for the amount of risk we are willing to take and then
use the portfolio allocation that maximizes the total reward of the portfolio while respecting
the maximum risk we are willing to take across the portfolio. Let's look at some common
portfolio-optimization methods, and observe how allocation varies for different allocation
methods.

Note that implementation details of different portfolio allocation techniques have been
omitted here for brevity's sake, but if you are interested then you should check out https:/
/github.com/sghoshusc/stratandport for a project that implements and compares these
different methods. It uses mean-reversion, trend-following, stat-arb, and pairs-trading
strategies applied to 12 different futures contracts and then builds optimal portfolios using
the methods we've discussed here. It uses python3 with the cvxopt package to perform
convex optimization for markowitz allocation and scikit learn for the regime predictive
allocation and matplotlib for visualization purpose.

https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport
https://github.com/sghoshusc/stratandport

Adapting to Market Participants and Conditions Chapter 10

[349]

Uniform risk allocation
Uniform risk allocation is the easiest method of portfolio allocation/optimization to
understand. It basically says we take the total amount of risk we are allowed to or willing to
take across the entire portfolio, and distribute it equally among all available trading
strategies. Intuitively, this is a good starting point or a baseline allocation method when we
don't have a historical performance record for any of the trading strategy, since nothing has
been deployed to live trading markets, but in practice this is rarely ever used.

PnL-based risk allocation
PnL-based risk allocation is probably the most intuitive portfolio allocation/optimization
technique. It says to start all available trading strategies with an equal amount of risk when
we have no live trading history. Then, as time goes on, we rebalance the portfolio-allocation
amounts based on the average performance of each trading strategy.

Let's say we want to rebalance our portfolio of trading strategy every month. Then at the
end of every month, we look at the average monthly PnLs of every trading strategy we
have in our portfolio and for the next month, every trading strategy gets risk proportional
to its average monthly performance, the best performers get the most risk and the worst
performers get the least risk allocated to them. This makes intuitive sense and is often how
a portfolio allocations are performed. It uses historical performance as a proxy for future
performance, which obviously isn't always true but is a good start.

It, however, does not factor in that different trading strategies might be taking different
kinds of risks, and a safer trading strategy might get less risk allocated to it in favor of more
volatile trading strategies. This allocation method also does not take correlation of returns
between different strategies into account while allocating risk to different trading strategies,
which can end up causing very high volatility for the portfolio returns.

The interesting point here is that eventually the strategy with the best historical
performance ends up with the majority of the risk allocation. Also, strategies that haven't
been performing as well as their peers gradually have their risk cut down to a very small
amount and often don't recover from there.

PnL-sharpe-based risk allocation
PnL-sharpe-based risk allocation is a step ahead of PnL-based risk allocation. It uses the
average PnLs normalized by historic standard deviation of returns to penalize trading
strategies that have large PnL swings, also known as very high volatility returns.

Adapting to Market Participants and Conditions Chapter 10

[350]

This allocation method solves the problem of avoiding the construction of a high-volatility
portfolio. But it still does not account for the correlation of returns between different
trading strategies, which can still end up causing us to construct a portfolio where the
individual trading strategies have good risk-adjusted PnLs but the portfolio as a whole is
highly volatile.

The trading strategy with the best performance still makes the most money, similar to what
we saw in the individual PnL-based allocation. However the other trading strategies still
get a decent portion of the total allocation amount. This is because when we factor for risk
in our allocation method, even strategies that make a lot of money don't necessarily end up
with large allocations because the volatility in their returns also increases with their PnLs.

Markowitz allocation
The Markowitz portfolio allocation is one of the most well-known portfolio-allocation
approaches in modern algorithmic/quantitative trading and is based on modern portfolio
theory. The idea here is to take the co-variance between the returns of all the trading
strategies in our portfolio and account for that when allocating risk to individual trading
strategies to minimize portfolio variance while maximizing portfolio returns. It is a convex
optimization problem and has many well-known and well-understood techniques to solve.
For a given level of portfolio variance, it can find the best allocation scheme to maximize
portfolio returns by building what is known as an efficient frontier curve, which is the
curve of optimal allocations for the trading strategies in the portfolio for different levels of
risk. From there, as our risk appetite grows or shrinks, and as more strategy results are
available as more trading days are seen, it is straightforward to rebalance the portfolio by
using the readjusted efficient frontier.

For Markowitz allocation, we can state the following:

Allocation seeks to maximize diversity of the different trading strategies in the
portfolio, by ensuring that strategies with uncorrelated returns have risk
allocated to them.
While in other allocation methods, the risk allocation for strategies that have poor
performance would have dropped close to 0, here even losing strategies have
some allocation assigned to them. This is because the periods in which these
losing strategies make money offsets periods where the rest of the portfolio loses
money, thus minimizing overall portfolio variance.

Adapting to Market Participants and Conditions Chapter 10

[351]

Regime Predictive allocation
Regime Predictive allocation is a technique that has been used by some advanced
participants in recent years and is still something that is actively being researched. This
studies the performance of different trading strategies as a function of different economic
indicators and then builds machine learning predictive models that can predict what kinds
of trading strategies and what product groups are most likely to do well given current
market conditions. To summarize, this allocation method uses economic indicators as input
features to a model that predicts trading strategies' expected performance in the current
market regime and then uses those predictions to balance allocations assigned to different
trading strategies in the portfolio.

Note that this method is still able to allocate the largest risk to the best-performing strategy
and reducing allocation on strategies that are performing poorly. This will make more sense
when we compare it to all the different allocation methods covered in the following plot:

Adapting to Market Participants and Conditions Chapter 10

[352]

When we compare the different allocation methods next to each other, we can make a
couple of observations. The first is that the Markowitz allocation method seems to be the
one with the least variance and steadily rises up. The Uniform allocation method performs
the worst. The Individual PnL-based allocation method actually has very good
performance, with a cumulative PnL of around $400,000,000. However, visually we can
observe that it has very large variance because the portfolio performance swings around a
lot, which we intuitively expected because it doesn't factor for variance/risk in any way.
The regime-based allocation method by far outperforms all other allocation methods with a
cumulative PnL of around $900,000,000. The regime-based allocation method also seems
like it has very low variance, thus achieving very good risk-adjusted performance for the
portfolio.

Let's look at the different allocation methods portfolio performance by comparing daily
average portfolio performance with daily standard deviation of portfolio performance in
the plot. We do this to see where each strategy-allocation method lies on the risk versus
reward curve, which we could also extend to find the efficient frontier, as shown here:

Adapting to Market Participants and Conditions Chapter 10

[353]

We can make the following observations from the preceding plot:

The avg-daily-PnLs and daily-risk are in $1,000 units.
We immediately see that Markowitz allocation has the minimum possible
portfolio risk/variance with an avg-PnL of $25,000 and risk of $300,000.
The Uniform risk allocation method has lowest portfolio avg-PnL of roughly
$20,000 but higher risk of $500,000.
The individual PnL allocation has a very large avg-PnL of $80,000 but with much
higher risk of $4,700,000, which would likely make it unusable in practice.
The Regime predictive allocation method has a very high avg-PnL of $180,000
and relatively low risk of $1,800,000, making it the best-available allocation
method in practice, thus also validating why it's an active research area right
now.

Incorporating technological advances
Now we approach the final section on best practices and the approaches to keeping up with
competitive market participants and changing market conditions. As we've discussed,
algorithmic/quantitative trading is largely a technology business and advances made in
technology over the years have a large impact on the algorithmic trading business.
Advances in technology is what allowed modern electronic trading in the first place,
starting from outcry pits to mostly-automated and technology-assisted trading. Advances
leading to faster trading servers, specialized network switches capable of higher
throughput and lower switching latencies, advances made in network card technology and
kernel bypass mechanisms, and even FPGA technology are important examples of this.
This has caused the electronic trading business to evolve into a high-frequency, round-the-
clock trading business where it is mostly automated trading bots trading against other
automated trading bots.

Not only have there been hardware enhancements, but even software development
practices have evolved over time. Now, large teams of talented software engineers have
figured out how to build scalable and extremely low latency trading systems and trading
strategies. This has been assisted by a combination of the evolution of both low-level and
high-level programming languages, such as C, C++, and Java, along with improvements in
compilers that can produce highly-optimized code; both have significantly improved the
scalability and speed of what trading systems and trading strategies can be deployed to live
trading markets.

Adapting to Market Participants and Conditions Chapter 10

[354]

A lot of market participants also now have access to microwave networks that can transmit
data between locations much faster than physical fiber connections can, leading to latency-
arbitrage opportunities. Time and time again, participants who have maintained their
technological edge and kept up with the technological advancements made by their
competition have been the ones to survive. Large algorithmic/HFT trading firms with
superior technologies have even cornered the market on some trades and made it
impossible for others to compete with them.

To summarize the main point of this section, algorithmic trading firms must continuously
evolve their use of technology for their trading business to stay competitive. If other market
participants gain access to breakthrough technologies, market participants who do not
adapt will get wiped out.

Summary
This chapter explored what happens when algorithmic trading system and algorithmic
trading strategies are deployed to live markets after months, and often years, of
development and research. Many common issues with live trading strategies, such as not
behaving or performing according to expectations, were discussed and we provided
common causes and possible solutions or approaches to remedy these. This should help to
prepare anyone looking to build and deploy algorithmic trading strategies to live markets,
and equip them with the knowledge to improve trading strategy components when things
don't go as expected.

Once the initial trading strategies are deployed and running in live markets as per
expectations, we discussed the evolving nature of the algorithmic trading business and
global markets in general. We covered a lot of different factors that cause profitable
strategies to slowly decay due to a variety of reasons, both internal to the trading strategy
itself and external in the form of other market participants and external conditions. We
explored the different factors at play and the enormous amount of work that needs to be
done on a continual basis to stay consistently profitable.

Adapting to Market Participants and Conditions Chapter 10

[355]

Final words
At this point, you have learned about all the components involved in a modern algorithmic
trading business. You should be well-versed in all the different components involved in an
end-to-end algorithmic trading setup between the trading exchange, as well as the
interactions between the trading exchange and the different market participants. In
addition, you should be able to understand how market participants interact with each
other via the exchange matching engine and available market data.

We looked at all the different methods of incorporating intelligence into our trading signals
using conventional technical analysis as well as advanced machine learning methods. We
discussed the details of trading strategies and how they convert intelligence from trading
signals into the order flow to manage positions and risk such that they are profitable, and
then looked at some sophisticated trading strategies that incorporate a lot more intelligence
available to them. We covered the extreme importance of strict risk management principles,
building a risk management system, and how to adjust it over time with trading strategy
performance.

We looked at all of the infrastructural components involved in a complete algorithmic
trading setup. Don't forget that trading strategies sit on top of infrastructure components;
hence, robust, fast, and reliable market data feed handlers, market data normalizers, and
order gateways are a key aspect of a profitable algorithmic trading business and must not
be overlooked.

We dedicated an entire chapter to understanding the inner workings of a backtester and
explored all the challenges that come with building, maintaining, and tweaking it, another
key element in quantitative automated data-driven trading strategies. Finally, you should
now know what to expect when trading strategies are finally adopted by live markets and
how to navigate that.

Remember, algorithmic trading is an extremely competitive and rewarding business and
draws some of the brightest minds in the world. There are also risks involved in trading
and it is in a constant state of evolution, so this journey will require a lot of dedication, hard
work, analytical thinking, perseverance, and continuous innovation. We wish the you the
best of luck as you embark on your journey into modern algorithmic trading!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Python for Finance - Second Edition
James Ma Weiming

ISBN: 9781789346466

Solve linear and nonlinear models representing various financial problems
Perform principal component analysis on the DOW index and its components
Analyze, predict, and forecast stationary and non-stationary time series processes
Create an event-driven backtesting tool and measure your strategies
Build a high-frequency algorithmic trading platform with Python
Replicate the CBOT VIX index with SPX options for studying VIX-based
strategies
Perform regression-based and classification-based machine learning tasks for
prediction
Use TensorFlow and Keras in deep learning neural network architecture

https://www.packtpub.com/in/big-data-and-business-intelligence/mastering-python-finance-second-edition

Other Books You May Enjoy

[357]

Hands-On Machine Learning for Algorithmic Trading
Stefan Jansen

ISBN: 9781789346411

Implement machine learning techniques to solve investment and trading
problems
Leverage market, fundamental, and alternative data to research alpha factors
Design and fine-tune supervised, unsupervised, and reinforcement learning
models
Optimize portfolio risk and performance using pandas, NumPy, and scikit-learn
Integrate machine learning models into a live trading strategy on Quantopian
Evaluate strategies using reliable backtesting methodologies for time series
Design and evaluate deep neural networks using Keras, PyTorch, and
TensorFlow
Work with reinforcement learning for trading strategies in the OpenAI Gym

https://www.packtpub.com/in/big-data-and-business-intelligence/hands-machine-learning-algorithmic-trading

Other Books You May Enjoy

[358]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
absolute price oscillator (APO) trading signal
 used, for mean reversion trading strategies 134,

137, 140, 141, 142, 143, 144
 used, for trend-following strategy 148, 149, 150,

151, 152, 153
absolute price oscillator (APO)
 about 53, 134
 implementing 53, 55
acceptor code example 281
algorithmic trading concepts
 about 13
 exchange market data protocols 16
 exchange matching algorithm 14
 exchange order book 14
 exchange order entry protocols 18
 limit order book 16
 market data feed handlers 17
 order entry gateway 18
 order types 17
 positions management 18
 profit and loss (PnL) management 18
algorithmic trading strategies, profit decay
 about 335
 by changes, in underlying

assumptions/relationships 339
 by exit of losing participants 338
 seasonal profit decay 340, 341
 signal decay, by absence of leading participants

336, 337
 signal decay, by lack of optimization 336
 signal discovery, by other participants 337
 to changes, in underlying

assumptions/relationships 340
 to discover, by other participants 338, 339
algorithmic trading system

 backtesting 26
 components 22
 execution logic 24, 25
 limit order book 23
 market data subscription 23
 positions 25
 profit and loss (PnL) management 25
 risk management 26
 signal aggregators 24
 signals, building 24
algorithmic trading
 about 29
 automate trading, need for 19
 evolution, from rule-based to AI 20, 21, 22
 from human intuition 19
 profitability 335
 technological advances, incorporating 353, 354
asset classes 10, 11
Auto-Regression Integrated Moving Averages

(ARIMA) 77
autocorrelation function (ACF) 78
automate trading
 need for 19
Average daily volume (ADV) 297

B
backtester dislocations, impact
 about 324
 choice of strategies, for deployment 326
 expected performance 326
 risk estimates 325
 risk management system 326
 signal validation 325
 strategy validation 325
backtester, versus live markets
 strategy performance 322, 323, 324
backtester

[360]

 about 296, 298
 building 289
 for-loop backtest systems 298
 rules 296, 297
 time value, evaluating 302, 303, 304, 305
backtesting 35, 36, 288
banging the close
 about 188
 reference link 188
Bollinger bands (BBANDS)
 about 59, 60
 implementing 60, 62
bonafide order 186
book builder 228
buy low strategy 29

C
call_if_not_empty function, arguments
 function 311
 queue 311
CFTC
 URL 186
classification machine learning methods
 K-nearest neighbors (KNN) 95, 96, 97
 logistic regression 99
 Support vector machine (SVM) 98
classification problem 82
command and control 232, 233
Communication API
 FIX communication protocols 269
 network basics 267
 reviewing 266
 trading protocols 267, 268, 269
components, trading strategy
 execution 230
 signal 230
critical components 232
Current Employment Statistics (CES)
 reference link 156

D
data handling 226
data signal
 preparing 31, 32, 33
data

 obtaining 30, 31
databases
 about 293
 non-relational databases 295
 relational databases 293, 295
decision tree regression 94
deque data structure
 methods 236
DevOps risk 189, 190
dual-moving average trading strategy
 backtesting 306

E
economic events
 trading strategy, creating 155
economic release
 about 156
 format 157
 in trading 158, 159, 160
 reference link 156, 157
electronic economic release services 157
event-based backtester 310, 311, 314, 316, 317,

318, 319
event-driven backtest systems
 about 299
 advantages 301
 disadvantages 301
 pseudo code 300
exchange market data protocols 16
exchange matching algorithm
 about 14
 FIFO matching 15
 pro-rata matching 15, 16
exchange order book 14
exchange order entry protocols 18
execution logic 24, 25
exponential moving average (EMA)
 about 49
 implementing 51, 52

F
Fast EMA 50
fat finger error
 reference link 190
Field Programmable Gate Arrays (FPGAs) 185

[361]

FIFO matching 15
financial dataset
 exploring 84, 86
Financial Information eXchange (FIX) 268
FINRA
 URL 186
FinTech 188
FIX communication protocols
 about 269
 orders 271
 price updates 269, 271
fixed income (FI) 268
for-loop backtest systems
 about 298
 advantages 299
 disadvantages 299
for-loop backtester 306, 307, 310
Foreign Exchange (FX) 225
foreign exchange (FX) 268
functions, acceptor code example
 Market Data request handling 282
 order management 283, 284, 285, 286
 other trading APIs 287
 trading APIs 286
Fundamentals of Algorithmic Trading
 reference link 193

G
gateway 226, 227, 228
Good Till Day (GTD) 17

H
HDF5 file
 about 291, 292, 293
 drawbacks 292
HDF5, hierarchical structure
 datasets 291
 groups 291
Hierarchical Data Format (HDF) 291
high frequency trading (HFT) 291, 322
high volatility returns 349
human intuition
 to algorithmic trading 19

I
Immediate Or Cancel (IOC) 17
in-sample data
 versus out-of-sample data 289
initiator code example
 about 275
 price updates 275, 277
Integrated Development Environment (IDE) 28
Inter Process Communication (IPC) 23

J
JetBrains
 reference link 29

K
K-nearest neighbors (KNN) 95, 96, 97
KDB 295

L
LASSO regression 93
limit order book
 about 16, 23
 designing 255, 256, 257, 259, 261, 262
linear classification methods
 used, for creating predictive models 95
linear regression methods
 decision tree regression 94
 LASSO regression 93
 Ordinary Least Squares (OLS) 87, 88, 89, 90
 Ridge regression 93
 used, for creating predictive models 87
LiquidityProvider class 236, 237, 238
live markets, versus backtester
 strategy performance 322, 323, 324
live trading, backtesting and strategies
 about 330
 analytics 334
 backtesting sophistication, improving 332, 333
 expected performance, adjusting for backtester

bias 333, 334
 historical market data accuracy 330, 331
 latencies, measuring 331, 332
 latencies, modeling 331, 332
logistic regression 99

[362]

M
market conditions
 adapting to 341
market data feed handlers 17
market data request handling 281
Market Data request handling
 about 282
 product, obtaining 283
 request ID, obtaining 283
 symbol ID, obtaining 283
market data subscription 23
market participants
 changing 341
market risk 190, 191
market sectors 9, 10
MarketSimulator class 250, 252
Markowitz allocation 350
max drawdown 196, 197, 198
max-loss 194
mean reversion trading strategies
 absolute price oscillator (APO) trading signal,

using 134, 137, 140, 141, 142, 143, 144
 dynamically, adjusting for changing volatility 144,

145, 146, 148
 volatility, adjusting 134
measures of risk
 differentiating 193
 max drawdown 196, 197, 198
 maximum executions per period 204
 maximum trade size 207
 PnLs, variance 201, 203
 position holding time 200, 201
 position limits 198, 199
 Sharpe ratio 203
 stop-loss 194, 196
 volume limits 207
modern algorithmic trading 12, 13
momentum (MOM)
 about 68, 69
 implementing 69
momentum strategies
 advantages 103
 creating 103
 disadvantages 103

 examples 104
moving average convergence divergence (MACD)
 about 55
 implementing 56, 59

N
naive data storage 290
National Center for Supercomputing Applications

(NCSA) 291
New York Stock Exchange (NYSE) 287
non-compete agreements (NCAs) 337
non-critical components
 about 232
 command and control 233
 services 234
non-disclosure agreements (NDAs) 337
non-relational databases 295
notations 81, 82, 83

O
operations, limit order book
 amendment 255
 cancellation 255
 insertion 255
 modification 255
order book management 228, 229
order entry gateway 18
order handling 281
order management system (OMS) 231
order management
 about 283, 284, 285, 286
 amend order (35=G) 283
 cancel order (35=F) 283
 new order (35=D) 283
order types
 about 17
 Good Till Day (GTD) 17
 Immediate Or Cancel (IOC) 17
 stop orders 17
OrderManager class 245, 246, 248, 249
Ordinary Least Squares (OLS) 87, 88, 89, 90
other trading APIs 287
out-of-sample data
 versus in-sample data 289

[363]

P
pair trading strategies
 creating 112, 115, 116, 117, 121, 122, 123,

125, 127, 129, 130
paper trading 290
partial autocorrelation function (PACF) 78
PnL-based risk allocation 349
PnL-sharpe-based risk allocation 349, 350
portfolio optimization
 about 348
 Markowitz allocation 350
 PnL-based risk allocation 349
 PnL-sharpe-based risk allocation 349, 350
 Regime Predictive allocation 351, 352, 353
 uniform risk allocation 349
position limits 198, 199
positions 25
Post Trade Analytics (PTA) 334
prediction models
 optimizing 344
predictive models
 creating, with linear classification methods 95
 creating, with linear regression methods 87
price updates
 receiving 272, 273, 274
pro-rata matching 15, 16
profit and loss (PnL) 18
profit and loss (PnL) management 18, 25
PyCharm 101 30
Python implementation
 about 104
 dual moving average 104, 106, 107
 naive trading strategy 107, 108
 turtle strategy 109, 110
Python
 algorithmic trading 29
 Integrated Development Environment (IDE),

selecting 28, 29
 LiquidityProvider class 236, 237, 238
 MarketSimulator class 250, 252
 need for 27, 28
 OrderManager class 245, 246, 248, 249
 statistical arbitrage trading strategies (StatArb)

164

 strategy class 239, 244

 TestTradingSimulation class 252, 253
 trading system, building 234, 235, 236
 workspace, setting up 29

Q
QuickFIX
 download link 272
quote stuffing 187
quote stuffing market manipulation
 reference link 187

R
Regime Predictive allocation 351, 352
regression problem 82
regularization concept 93
relational databases 293, 295
relative strength indicator (RSI)
 about 62, 63
 implementing 63
residual errors 82
resistance indicators 40, 41, 42, 43, 44, 46, 47
reversion strategies
 advantages 111
 creating 111
 disadvantages 111
 examples 112
Ridge regression 93
risk factors
 banging the close 188
 quantifying 191
 quote stuffing 187
 regulation violation risks 186
 sources 188
 spoofing 186, 187
 trading losses 185
 versus risk types 185
risk management 26
risk management algorithm 220
 creating 208, 212, 213
 risk, adjusting 213, 214, 216, 219, 221, 222
risk types
 versus risk factors 185
risk violations
 severity 192

[364]

S
seasonality
 advanced concepts, implementing 71, 73, 74,

75, 76, 77, 78, 79
SEC
 URL 186
sell high strategy 29
services 234
sharpe ratio 203
shrinkage concept 93
signal aggregators 24
signal visualization 34, 35
signals dictionary/database
 building 341, 342
 trading 341, 342
signals
 building 24
simple moving average (SMA)
 about 47, 48
 implementing 48, 49
Simulated Clock function 303
simulation dislocations, causes
 about 327
 fees 327
 latency variance 328, 329
 market data issues 328
 market impact 329, 330
 operational issues 328
 place-in-line estimates 329
 slippage 327
Slow EMA 50
software implementation risk 188
spoofing
 about 186, 187
 reference link 187
standard deviation (STDEV) 144
 about 66
 implementing 66, 67, 68
statistical arbitrage trading strategies (StatArb)
 about 161
 basics 161
 data set 164, 166
 execution logic 172
 implementing 161

 in Python 164
 infrastructure expenses 163
 lead-lag 162
 portfolio composition, adjusting 162, 163
 relationships, adjusting 162, 163
 signal parameters, defining 166
 signal performance analysis 174, 176, 177,

178, 180, 182
 strategy performance analysis 174, 176, 177,

178, 180, 182
 trading parameters, defining 167
 trading signals, computing 168, 169, 170, 171
 trading signals, qualifying 168, 169, 170, 171
statistical inference 82
stop orders 17
stop-loss 194, 195
strategy class
 about 239, 244
 execution part 239
 signal part 239
Structured Query Language (SQL) 293
supervised learning problem 82
support indicators 40, 41, 42, 43, 44, 46, 47
Support vector machine (SVM) 98, 99

T
terminology 81, 82, 83
TestTradingSimulation class 252, 253
tick-to-order 232
tick-to-trade 232
time series 71
trading API, examples
 reference link 267
trading APIs 286
trading finance
 fiber 267
 microwave 267
 wire 267
trading losses
 reference link 185
trading protocols 267, 268, 269
trading signals
 absolute price oscillator (APO) 53
 Bollinger bands (BBANDS) 59, 60
 creating, based on fundamental technical

analysis 47
 exponential moving average (EMA) 49, 50
 momentum (MOM) 68, 69
 moving average convergence divergence

(MACD) 56
 optimizing 343
 relative strength indicator (RSI) 62, 63
 researching 345, 346
 simple moving average (SMA) 47, 48
 standard deviation (STDEV) 66
trading strategies and systems
 reference link 189
trading strategy parameters
 optimizing 344, 345
trading strategy
 about 230, 231
 adjusting, for trading instrument volatility 133,

134

 adjusting, for trading instrument volatility in
technical indicators 132, 133

 creating, for economic events 155
 creating, for trading instrument volatility 132
 designing, based on trend- and momentum-

based indicators 40
 expanding 347, 348
 volatility, adjusting to mean reversion trading

strategies 134
trading system
 about 225, 226
 acceptor code example 281

 building, in Python 234, 235, 236
 critical components 232
 gateway 226, 227, 228
 market response, receiving 279, 280, 281
 non-critical components 232
 order book management 228, 229
 order management system (OMS) 231
 orders, sending 279, 280, 281
 trade, with exchanges 264, 265, 266
 trading strategy 230, 231
trading, concepts
 about 8, 9
 asset classes 10, 11
 market sectors 9, 10
 modern algorithmic trading 12, 13
trading
 need for 8
trend-following strategy
 absolute price oscillator (APO) trading signal,

using 148, 149, 150, 151, 152, 153
 dynamically, adjusting for changing volatility 153,

155

U
uniform risk allocation 349

V
variance 66
Volume Weighted Average Price (VWAP) 18

	Cover
	Title Page
	Copyright and Credits
	About Packt
	Contributors
	Table of Contents
	Preface
	Section 1: Introduction and Environment Setup
	Chapter 1: Algorithmic Trading Fundamentals
	Why are we trading?
	Basic concepts regarding the modern trading setup
	Market sectors
	Asset classes
	Basics of what a modern trading exchange looks like

	Understanding algorithmic trading concepts
	Exchange order book
	Exchange matching algorithm
	FIFO matching
	Pro-rata matching

	Limit order book
	Exchange market data protocols
	Market data feed handlers
	Order types
	IOC – Immediate Or Cancel
	GTD – Good Till Day
	Stop orders

	Exchange order entry protocols
	Order entry gateway
	Positions and profit and loss (PnL) management

	From intuition to algorithmic trading
	Why do we need to automate trading?
	Evolution of algorithmic trading – from rule-based to AI

	Components of an algorithmic trading system
	Market data subscription
	Limit order books
	Signals
	Signal aggregators
	Execution logic
	Position and PnL management
	Risk management
	Backtesting

	Why Python?
	Choice of IDE – Pycharm or Notebook
	Our first algorithmic trading (buy when the price is low, and sell when the price is high)
	Setting up your workspace
	PyCharm 101
	Getting the data
	Preparing the data – signal
	Signal visualization
	Backtesting

	Summary

	Section 2: Trading Signal Generation and Strategies
	Chapter 2: Deciphering the Markets with Technical Analysis
	Designing a trading strategy based on trend- and momentum-based indicators
	Support and resistance indicators

	Creating trading signals based on fundamental technical analysis
	Simple moving average
	Implementation of the simple moving average

	Exponential moving average
	Implementation of the exponential moving average

	Absolute price oscillator
	Implementation of the absolute price oscillator

	Moving average convergence divergence
	Implementation of the moving average convergence divergence

	Bollinger bands
	Implementation of Bollinger bands

	Relative strength indicator
	Implementation of the relative strength indicator

	Standard deviation
	Implementing standard derivatives

	Momentum
	Implementation of momentum

	Implementing advanced concepts, such as seasonality, in trading instruments
	Summary

	Chapter 3: Predicting the Markets with Basic Machine Learning
	Understanding the terminology and notations
	Exploring our financial dataset

	Creating predictive models using linear regression methods
	Ordinary Least Squares
	Regularization and shrinkage – LASSO and Ridge regression
	Decision tree regression

	Creating predictive models using linear classification methods
	K-nearest neighbors
	Support vector machine
	Logistic regression

	Summary

	Section 3: Algorithmic Trading Strategies
	Chapter 4: Classical Trading Strategies Driven by Human Intuition
	Creating a trading strategy based on momentum and trend following
	Examples of momentum strategies
	Python implementation
	Dual moving average
	Naive trading strategy
	Turtle strategy

	Creating a trading strategy that works for markets with reversion behavior
	Examples of reversion strategies

	Creating trading strategies that operate on linearly correlated groups of trading instruments
	Summary

	Chapter 5: Sophisticated Algorithmic Strategies
	Creating a trading strategy that adjusts for trading instrument volatility
	Adjusting for trading instrument volatility in technical indicators
	Adjusting for trading instrument volatility in trading strategies
	Volatility adjusted mean reversion trading strategies
	Mean reversion strategy using the absolute price oscillator trading signal
	Mean reversion strategy that dynamically adjusts for changing volatility
	Trend-following strategy using absolute price oscillator trading signal
	Trend-following strategy that dynamically adjusts for changing volatility

	Creating a trading strategy for economic events
	Economic releases
	Economic release format
	Electronic economic release services
	Economic releases in trading

	Understanding and implementing basic statistical arbitrage trading strategies
	Basics of StatArb
	Lead-lag in StatArb
	Adjusting portfolio composition and relationships
	Infrastructure expenses in StatArb
	StatArb trading strategy in Python
	StatArb data set
	Defining StatArb signal parameters
	Defining StatArb trading parameters
	Quantifying and computing StatArb trading signals
	StatArb execution logic
	StatArb signal and strategy performance analysis

	Summary

	Chapter 6: Managing the Risk of Algorithmic Strategies
	Differentiating between the types of risk and risk factors
	Risk of trading losses
	Regulation violation risks
	Spoofing
	Quote stuffing
	Banging the close
	Sources of risk
	Software implementation risk
	DevOps risk
	Market risk

	Quantifying the risk
	The severity of risk violations

	Differentiating the measures of risk
	Stop-loss
	Max drawdown
	Position limits
	Position holding time
	Variance of PnLs
	Sharpe ratio
	Maximum executions per period
	Maximum trade size
	Volume limits

	Making a risk management algorithm
	Realistically adjusting risk

	Summary

	Section 4: Building a Trading System
	Chapter 7: Building a Trading System in Python
	Understanding the trading system
	Gateways
	Order book management
	Strategy
	Order management system
	Critical components
	Non-critical components
	Command and control
	Services

	Building a trading system in Python
	LiquidityProvider class
	Strategy class
	OrderManager class
	MarketSimulator class
	TestTradingSimulation class

	Designing a limit order book
	Summary

	Chapter 8: Connecting to Trading Exchanges
	Making a trading system trade with exchanges
	Reviewing the Communication API
	Network basics
	Trading protocols
	FIX communication protocols
	Price updates
	Orders

	Receiving price updates
	Initiator code example
	Price updates

	Sending orders and receiving a market response
	Acceptor code example
	Market Data request handling
	Order

	Other trading APIs

	Summary

	Chapter 9: Creating a Backtester in Python
	Learning how to build a backtester
	In-sample versus out-of-sample data
	Paper trading (forward testing)
	Naive data storage
	HDF5 file
	Databases
	Relational databases
	Non-relational databases

	Learning how to choose the correct assumptions
	For-loop backtest systems
	Advantages
	Disadvantages

	Event-driven backtest systems
	Advantages
	Disadvantages

	Evaluating what the value of time is
	Backtesting the dual-moving average trading strategy
	For-loop backtester
	Event-based backtester

	Summary

	Section 5: Challenges in Algorithmic Trading
	Chapter 10: Adapting to Market Participants and Conditions
	Strategy performance in backtester versus live markets
	Impact of backtester dislocations
	Signal validation
	Strategy validation
	Risk estimates
	Risk management system
	Choice of strategies for deployment
	Expected performance

	Causes of simulation dislocations
	Slippage
	Fees
	Operational issues
	Market data issues
	Latency variance
	Place-in-line estimates
	Market impact

	Tweaking backtesting and strategies in response to live trading
	Historical market data accuracy
	Measuring and modeling latencies
	Improving backtesting sophistication
	Adjusting expected performance for backtester bias
	Analytics on live trading strategies

	Continued profitability in algorithmic trading
	Profit decay in algorithmic trading strategies
	Signal decay due to lack of optimization
	Signal decay due to absence of leading participants
	Signal discovery by other participants
	Profit decay due to exit of losing participants
	Profit decay due to discovery by other participants
	Profit decay due to changes in underlying assumptions/relationships
	Seasonal profit decay

	Adapting to market conditions and changing participants
	Building a trading signals dictionary/database
	Optimizing trading signals
	Optimizing prediction models
	Optimizing trading strategy parameters
	Researching new trading signals
	Expanding to new trading strategies
	Portfolio optimization
	Uniform risk allocation
	PnL-based risk allocation
	PnL-sharpe-based risk allocation
	Markowitz allocation
	Regime Predictive allocation

	Incorporating technological advances

	Summary
	Final words

	Other Books You May Enjoy
	Index

